TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Moreno, Eduardo A1 - Großmann, Robert A1 - Beta, Carsten A1 - Alonso, Sergio T1 - From single to collective motion of social amoebae BT - a computational study of interacting cells JF - Frontiers in physics N2 - The coupling of the internal mechanisms of cell polarization to cell shape deformations and subsequent cell crawling poses many interdisciplinary scientific challenges. Several mathematical approaches have been proposed to model the coupling of both processes, where one of the most successful methods relies on a phase field that encodes the morphology of the cell, together with the integration of partial differential equations that account for the polarization mechanism inside the cell domain as defined by the phase field. This approach has been previously employed to model the motion of single cells of the social amoeba Dictyostelium discoideum, a widely used model organism to study actin-driven motility and chemotaxis of eukaryotic cells. Besides single cell motility, Dictyostelium discoideum is also well-known for its collective behavior. Here, we extend the previously introduced model for single cell motility to describe the collective motion of large populations of interacting amoebae by including repulsive interactions between the cells. We performed numerical simulations of this model, first characterizing the motion of single cells in terms of their polarity and velocity vectors. We then systematically studied the collisions between two cells that provided the basic interaction scenarios also observed in larger ensembles of interacting amoebae. Finally, the relevance of the cell density was analyzed, revealing a systematic decrease of the motility with density, associated with the formation of transient cell clusters that emerge in this system even though our model does not include any attractive interactions between cells. This model is a prototypical active matter system for the investigation of the emergent collective dynamics of deformable, self-driven cells with a highly complex, nonlinear coupling of cell shape deformations, self-propulsion and repulsive cell-cell interactions. Understanding these self-organization processes of cells like their autonomous aggregation is of high relevance as collective amoeboid motility is part of wound healing, embryonic morphogenesis or pathological processes like the spreading of metastatic cancer cells. KW - cell motility KW - cell polarity KW - reaction-diffusion models KW - cell-cell KW - interactions KW - phase field model KW - collective motion KW - active matter Y1 - 2022 U6 - https://doi.org/10.3389/fphy.2021.750187 SN - 2296-424X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Schmidt, Thomas A1 - Cioni, Maria-Rosa L. A1 - Niederhofer, Florian A1 - Bekki, Kenji A1 - Bell, Cameron P. M. A1 - de Grijs, Richard A1 - El Youssoufi, Dalal A1 - Ivanov, Valentin D. A1 - Oliveira, Joana M. A1 - Ripepi, Vincenzo A1 - van Loon, Jacco Th. T1 - The VMC survey: XLV. Proper motion of the outer LMC and the impact of the SMC JF - Astronomy and astrophysics N2 - Context. The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and, owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. Aims. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, for example with the SMC about 250 Myr ago. Methods. We calculate proper motions using multi-epoch K s -band images from the VISTA survey of the Magellanic Cloud system (VMC). Observations span a time baseline of 2-5 yr. We combine the VMC data with data from the Gaia Early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. Results. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The southeastern region of the LMC shows a slow rotational speed compared to the overall rotation. N-body simulations suggest that this could be caused by a fraction of stripped SMC stars located in that particular region that move opposite to the expected rotation. KW - Galaxy: kinematics and dynamics KW - Magellanic Clouds KW - galaxies: KW - interactions KW - proper motions KW - surveys Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142148 SN - 0004-6361 SN - 1432-0746 VL - 663 PB - EDP Sciences CY - Les Ulis ER -