TY - JOUR A1 - Tiegs, Scott D. A1 - Costello, David M. A1 - Isken, Mark W. A1 - Woodward, Guy A1 - McIntyre, Peter B. A1 - Gessner, Mark O. A1 - Chauvet, Eric A1 - Griffiths, Natalie A. A1 - Flecker, Alex S. A1 - Acuna, Vicenc A1 - Albarino, Ricardo A1 - Allen, Daniel C. A1 - Alonso, Cecilia A1 - Andino, Patricio A1 - Arango, Clay A1 - Aroviita, Jukka A1 - Barbosa, Marcus V. M. A1 - Barmuta, Leon A. A1 - Baxter, Colden V. A1 - Bell, Thomas D. C. A1 - Bellinger, Brent A1 - Boyero, Luz A1 - Brown, Lee E. A1 - Bruder, Andreas A1 - Bruesewitz, Denise A. A1 - Burdon, Francis J. A1 - Callisto, Marcos A1 - Canhoto, Cristina A1 - Capps, Krista A. A1 - Castillo, Maria M. A1 - Clapcott, Joanne A1 - Colas, Fanny A1 - Colon-Gaud, Checo A1 - Cornut, Julien A1 - Crespo-Perez, Veronica A1 - Cross, Wyatt F. A1 - Culp, Joseph M. A1 - Danger, Michael A1 - Dangles, Olivier A1 - de Eyto, Elvira A1 - Derry, Alison M. A1 - Diaz Villanueva, Veronica A1 - Douglas, Michael M. A1 - Elosegi, Arturo A1 - Encalada, Andrea C. A1 - Entrekin, Sally A1 - Espinosa, Rodrigo A1 - Ethaiya, Diana A1 - Ferreira, Veronica A1 - Ferriol, Carmen A1 - Flanagan, Kyla M. A1 - Fleituch, Tadeusz A1 - Shah, Jennifer J. Follstad A1 - Frainer, Andre A1 - Friberg, Nikolai A1 - Frost, Paul C. A1 - Garcia, Erica A. A1 - Lago, Liliana Garcia A1 - Garcia Soto, Pavel Ernesto A1 - Ghate, Sudeep A1 - Giling, Darren P. A1 - Gilmer, Alan A1 - Goncalves, Jose Francisco A1 - Gonzales, Rosario Karina A1 - Graca, Manuel A. S. A1 - Grace, Mike A1 - Grossart, Hans-Peter A1 - Guerold, Francois A1 - Gulis, Vlad A1 - Hepp, Luiz U. A1 - Higgins, Scott A1 - Hishi, Takuo A1 - Huddart, Joseph A1 - Hudson, John A1 - Imberger, Samantha A1 - Iniguez-Armijos, Carlos A1 - Iwata, Tomoya A1 - Janetski, David J. A1 - Jennings, Eleanor A1 - Kirkwood, Andrea E. A1 - Koning, Aaron A. A1 - Kosten, Sarian A1 - Kuehn, Kevin A. A1 - Laudon, Hjalmar A1 - Leavitt, Peter R. A1 - Lemes da Silva, Aurea L. A1 - Leroux, Shawn J. A1 - Leroy, Carri J. A1 - Lisi, Peter J. A1 - MacKenzie, Richard A1 - Marcarelli, Amy M. A1 - Masese, Frank O. A1 - Mckie, Brendan G. A1 - Oliveira Medeiros, Adriana A1 - Meissner, Kristian A1 - Milisa, Marko A1 - Mishra, Shailendra A1 - Miyake, Yo A1 - Moerke, Ashley A1 - Mombrikotb, Shorok A1 - Mooney, Rob A1 - Moulton, Tim A1 - Muotka, Timo A1 - Negishi, Junjiro N. A1 - Neres-Lima, Vinicius A1 - Nieminen, Mika L. A1 - Nimptsch, Jorge A1 - Ondruch, Jakub A1 - Paavola, Riku A1 - Pardo, Isabel A1 - Patrick, Christopher J. A1 - Peeters, Edwin T. H. M. A1 - Pozo, Jesus A1 - Pringle, Catherine A1 - Prussian, Aaron A1 - Quenta, Estefania A1 - Quesada, Antonio A1 - Reid, Brian A1 - Richardson, John S. A1 - Rigosi, Anna A1 - Rincon, Jose A1 - Risnoveanu, Geta A1 - Robinson, Christopher T. A1 - Rodriguez-Gallego, Lorena A1 - Royer, Todd V. A1 - Rusak, James A. A1 - Santamans, Anna C. A1 - Selmeczy, Geza B. A1 - Simiyu, Gelas A1 - Skuja, Agnija A1 - Smykla, Jerzy A1 - Sridhar, Kandikere R. A1 - Sponseller, Ryan A1 - Stoler, Aaron A1 - Swan, Christopher M. A1 - Szlag, David A1 - Teixeira-de Mello, Franco A1 - Tonkin, Jonathan D. A1 - Uusheimo, Sari A1 - Veach, Allison M. A1 - Vilbaste, Sirje A1 - Vought, Lena B. M. A1 - Wang, Chiao-Ping A1 - Webster, Jackson R. A1 - Wilson, Paul B. A1 - Woelfl, Stefan A1 - Xenopoulos, Marguerite A. A1 - Yates, Adam G. A1 - Yoshimura, Chihiro A1 - Yule, Catherine M. A1 - Zhang, Yixin X. A1 - Zwart, Jacob A. T1 - Global patterns and drivers of ecosystem functioning in rivers and riparian zones JF - Science Advances N2 - River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aav0486 SN - 2375-2548 VL - 5 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Giling, Darren P. A1 - Nejstgaard, Jens C. A1 - Berger, Stella A. A1 - Grossart, Hans-Peter A1 - Kirillin, Georgiy A1 - Penske, Armin A1 - Lentz, Maren A1 - Casper, Peter A1 - Sareyka, Joerg A1 - Gessner, Mark O. T1 - Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm JF - Global change biology N2 - Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes. Keywords: climate variability, ecosystem productivity, extreme events, gross primary production, mesocosm, respiration stratified lakes KW - climate variability KW - ecosystem productivity KW - extreme events KW - gross primary production KW - mesocosm KW - respiration stratified lakes Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13512 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 1448 EP - 1462 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Kalinkat, Gregor A1 - Cabral, Juliano Sarmento A1 - Darwall, William A1 - Ficetola, G. Francesco A1 - Fisher, Judith L. A1 - Giling, Darren P. A1 - Gosselin, Marie-Pierre A1 - Grossart, Hans-Peter A1 - Jaehnig, Sonja C. A1 - Jeschke, Jonathan M. A1 - Knopf, Klaus A1 - Larsen, Stefano A1 - Onandia, Gabriela A1 - Paetzig, Marlene A1 - Saul, Wolf-Christian A1 - Singer, Gabriel A1 - Sperfeld, Erik A1 - Jaric, Ivan T1 - Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity T2 - Conservation biology : the journal of the Society for Conservation Biology Y1 - 2017 U6 - https://doi.org/10.1111/cobi.12813 SN - 0888-8892 SN - 1523-1739 VL - 31 SP - 481 EP - 485 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Giling, Darren P. A1 - Staehr, Peter A. A1 - Grossart, Hans-Peter A1 - Andersen, Mikkel Rene A1 - Boehrer, Bertram A1 - Escot, Carmelo A1 - Evrendilek, Fatih A1 - Gomez-Gener, Lluis A1 - Honti, Mark A1 - Jones, Ian D. A1 - Karakaya, Nusret A1 - Laas, Alo A1 - Moreno-Ostos, Enrique A1 - Rinke, Karsten A1 - Scharfenberger, Ulrike A1 - Schmidt, Silke R. A1 - Weber, Michael A1 - Woolway, R. Iestyn A1 - Zwart, Jacob A. A1 - Obrador, Biel T1 - Delving deeper: Metabolic processes in the metalimnion of stratified lakes JF - Limnology and oceanography N2 - Many lakes exhibit seasonal stratification, during which they develop strong thermal and chemical gradients. An expansion of depth-integrated monitoring programs has provided insight into the importance of organic carbon processing that occurs below the upper mixed layer. However, the chemical and physical drivers of metabolism and metabolic coupling remain unresolved, especially in the metalimnion. In this depth zone, sharp gradients in key resources such as light and temperature co-occur with dynamic physical conditions that influence metabolic processes directly and simultaneously hamper the accurate tracing of biological activity. We evaluated the drivers of metalimnetic metabolism and its associated uncertainty across 10 stratified lakes in Europe and North America. We hypothesized that the metalimnion would contribute highly to whole-lake functioning in clear oligotrophic lakes, and that metabolic rates would be highly variable in unstable polymictic lakes. Depth-integrated rates of gross primary production (GPP) and ecosystem respiration (ER) were modelled from diel dissolved oxygen curves using a Bayesian approach. Metabolic estimates were more uncertain below the epilimnion, but uncertainty was not consistently related to lake morphology or mixing regime. Metalimnetic rates exhibited high day-to-day variability in all trophic states, with the metalimnetic contribution to daily whole-lake GPP and ER ranging from 0% to 87% and < 1% to 92%, respectively. Nonetheless, the metalimnion of low-nutrient lakes contributed strongly to whole-lake metabolism on average, driven by a collinear combination of highlight, low surface-water phosphorous concentration and high metalimnetic volume. Consequently, a single-sensor approach does not necessarily reflect whole-ecosystem carbon dynamics in stratified lakes. Y1 - 2017 U6 - https://doi.org/10.1002/lno.10504 SN - 0024-3590 SN - 1939-5590 VL - 62 SP - 1288 EP - 1306 PB - Wiley CY - Hoboken ER -