TY - JOUR A1 - Santer, Svetlana T1 - Remote control of soft nano-objects by light using azobenzene containing surfactants JF - Journal of physics ; D, Applied physics N2 - We review recent progress in the field of light responsive soft nano-objects. These are systems the shape, size, surface area and surface energy of which can be easily changed by low-intensity external irradiation. Here we shall specifically focus on microgels, DNA molecules, polymer brushes and colloidal particles. One convenient way to render these objects photosensitive is to couple them via ionic and/or hydrophobic interactions with azobenzene containing surfactants in a non-covalent way. The advantage of this strategy is that these surfactants can make any type of charged object light responsive without the need for possibly complicated (and irreversible) chemical conjugation. In the following, we will exclusively discuss only photosensitive surfactant systems. These contain a charged head and a hydrophobic tail into which an azobenzene group is incorporated, which can undergo reversible photo-isomerization from a trans-to a cis-configuration under UV illumination. These kinds of photo-isomerizations occur on a picosecond timescale and are fully reversible. The two isomers in general possess different polarity, i.e. the trans-state is less polar with a dipole moment of usually close to 0 Debye, while the cis-isomer has a dipole moment up to 3 Debye or more, depending on additional phenyl ring substituents. As part of the hydrophobic tail of a surfactant molecule, the photo-isomerization also changes the hydrophobicity of the molecule as a whole and hence its solubility, surface energy, and strength of interaction with other substances. Being a molecular actuator, which converts optical energy in to mechanical work, the azobenzene group in the shape of surfactant molecule can be utilized in order to actuate matter on larger time and length scale. In this paper we show several interesting examples, where azobenzene containing surfactants play the role of a transducer mediating between different states of size, shape, surface energy and spatial arrangement of various nanoscale soft-material systems. KW - photosensitive surfactants KW - azobenzene KW - photosensitive soft objects KW - light responsive microgels KW - light responsive polymer brushes KW - light responsive DNA Y1 - 2017 U6 - https://doi.org/10.1088/1361-6463/aa95ca SN - 0022-3727 SN - 1361-6463 VL - 51 IS - 1 PB - IOP Publ. CY - Bristol ER -