TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Fernandes Guimarães, Ana Helena T1 - How does adhesion influence the small aggregates in Saturn's rings T1 - Wie Adhäsion die Bildung von Aggregaten in den Saturnringen beeinflusst N2 - Particles in Saturn’s main rings range in size from dust to even kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q⋆ of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into “strength” and “gravity” regimes, and b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few meters, consistent with the maximum aggregate size observed in Saturn’s rings of about 10m. N2 - Die Ringe des Saturns bestehen aus Myriaden von Teilchen, deren Größe von Mikrometern (Staub) bis hin zu Hunderten von Metern reicht. Die Ringteilchen bestehen hauptsächlich aus Eis, wobei attraktive Oberflächenkräfte wie Adhäsion und Gravitation zur Bildung von Aggregaten führen kann. Das Wachstum der Aggregate wird durch die Wirkung der Gezeitenkräfte und auch durch Kollisionen der Ringteilchen untereinander auf natürliche Weise begrenzt. Die Kollisionen der Ringteilchen führen zu Akkretion und Fragmentation, welche die resultierende Größenverteilung der Agglomerate schließlich bestimmen. In dieser Arbeit wurden Ausdrücke für die spezifische Eigenenergie Q der Aggregate und der in Relation stehenden spezifischen Fragmentationsenergie Q* analytisch hergeleitet. Diese Ausdrücke können für alle aus monomeren Teilchen bestehenden Agglomerate verwendet werden. Die analytisch gewonnenen Ergebnisse wurden mit numerischen Experimenten verglichen. In den numerischen Experimenten wurden verschiedene Agglomerattypen erzeugt: (i) Agglomerate mit kubischem Kristallsystem, (ii) ballistische Teilchenaggregate und (iii) modifiziert ballistische Teilchenaggregate. Für die ballistischen Teilchenaggregate wurden verschiedene Größenverteilungen der Konstituenten verwendet. Als Ergebnis lassen sich die erzeugten Aggregate gemäß ihrer Größe in zwei Gruppen einteilen. Während die kleinen Aggregate hauptsächlich durch die Kontaktkräfte (Adhäsion) zusammengehalten werden, dominiert bei großen Aggregaten (größer als einige Meter) die Gravitationskraft. D.h. wächst aus kleinen Teilchen ein Aggregat, so wird dieses zunächst durch die haftenden Kontakte zwischen den Teilchen zusammengehalten. Wächst das Agglomerat über eine bestimmte Größe, so ist es die Eigengravitation, die den Körper zusammenhält. Damit kann die maximale Gesamtgröße der Aggregate im Kollisionsensemble abgeschätzt werden. Der so bestimmte Wert von einigen Metern stimmt mit der aus Beobachtungen berechneten maximalen Größe der Ringteilchen von rund 10 Metern gut überein. KW - Saturn KW - Ringe KW - Agglomerate KW - Adhäsion KW - Saturn KW - Ring KW - Aggregates KW - Adhesion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61846 ER -