TY - JOUR A1 - Steinke, Martin A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Liermann, A. A1 - Todt, Helge Tobias T1 - Analysis of the WN star WR102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Context. The massive Wolf-Rayet type star WR102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims. The goals of our study are to derive the stellar parameters of WR102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results. Our new analysis supersedes the results previously reported for WR102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR102c. These stars have radial velocities similar to that of WR102c. We suggest that together with WR102c these stars belong to a distinct star cluster with a total mass of similar to 1000 M-circle dot. We identify a new WR nebula around WR102c in the SINFONI map of the di ff use Br gamma emission and in the HST Pa ff images. The Br gamma line at di ff erent locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H i i region around WR102c. Conclusions. The massive star WR102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR102c. KW - stars: early-type KW - stars: individual: WR 102c KW - stars: Wolf KW - Rayet KW - Galaxy: center KW - HII regions KW - infrared: stars Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527692 SN - 1432-0746 VL - 588 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Fürst, F. A1 - Kretschmar, P. A1 - Oskinova, Lida A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer T1 - Coupling hydrodynamics with comoving frame radiative transfer BT - Stellar wind stratification in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at u(infinity) approximate to 600 km s(-1). On the other hand, the wind velocity in the inner region where the NS is located is only approximate to 100 km s(-1), which is not expected on the basis of a standard beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: massive KW - X-rays: binaries Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731575 SN - 1432-0746 VL - 610 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Coupling hydrodynamics with comoving frame radiative transfer I. A unified approach for OB and WR stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims. We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (nonLTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods. Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results. The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant zeta Pup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions. For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard beta-law occur. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730642 SN - 1432-0746 VL - 603 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Vink, Jorick S. A1 - Hamann, Wolf-Rainer T1 - Driving classical Wolf-Rayet winds BT - a Gamma- and Z-dependent mass-loss JF - Monthly notices of the Royal Astronomical Society N2 - Classical Wolf-Rayet (cWR) stars are at a crucial evolutionary stage for constraining the fates of massive stars. The feedback of these hot, hydrogen-depleted stars dominates their surrounding by tremendous injections of ionizing radiation and kinetic energy. The strength of a Wolf-Rayet (WR) wind decides the eventual mass of its remnant, likely a massive black hole. However, despite their major influence and importance for gravitational wave detection statistics, WR winds are particularly poorly understood. In this paper, we introduce the first set of hydrodynamically consistent stellar atmosphere models for cWR stars of both the carbon (C) and the nitrogen (N) sequence, i.e. WC and WN stars, as a function of stellar luminosity-to-mass ratio (or Eddington Gamma) and metallicity. We demonstrate the inapplicability of the CAK wind theory for cWR stars and confirm earlier findings that their winds are launched at the (hot) iron (Fe) opacity peak. For log Z/Z(circle dot) > -2, Fe is also the main accelerator throughout the wind. Contrasting previous claims of a sharp lower mass-loss limit forWR stars, we obtain a smooth transition to optically thin winds. Furthermore, we find a strong dependence of the mass-loss rates on Eddington Gamma, both at solar and subsolar metallicity. Increases inWCcarbon and oxygen abundances turn out to slightly reduce the predicted mass-loss rates. Calculations at subsolar metallicities indicate that below the metallicity of the Small Magellanic Cloud, WR mass-loss rates decrease much faster than previously assumed, potentially allowing for high black hole masses even in the local Universe. KW - stars: atmospheres KW - stars: early-type KW - stars: fundamental parameters KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz3064 SN - 0035-8711 SN - 1365-2966 VL - 491 IS - 3 SP - 4406 EP - 4425 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hainich, Rainer A1 - Oskinova, Lida A1 - Shenar, Tomer A1 - Marchant Campos, Pablo A1 - Eldridge, J. J. A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Langer, Norbert A1 - Todt, Helge Tobias T1 - Observational properties of massive black hole binary progenitors JF - Astronomy and astrophysics : an international weekly journal N2 - Context: The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed. KW - gravitational waves KW - binaries: close KW - stars: early-type KW - stars: atmospheres KW - stars: winds KW - outflows KW - stars: mass-loss Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731449 SN - 1432-0746 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Gimenez-Garcia, Ana A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates. KW - stars: early-type KW - stars: mass-loss KW - stars: winds, outflows KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425356 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Ramachandran, Varsha A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gruner, David A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities JF - Astronomy and astrophysics : an international weekly journal N2 - The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of models. Here we provide grids of model atmospheres for OB-type stars at metallicities corresponding to the Small and Large Magellanic Clouds, as well as to solar metallicity. In total, the grids comprise 785 individual models. The models were calculated using the state-of-the-art Potsdam Wolf-Rayet (PoWR) model atmosphere code. The parameter domain of the grids was set up using stellar evolution tracks. For all these models, we provide normalized and flux-calibrated spectra, spectral energy distributions, feedback parameters such as ionizing photons, Zanstra temperatures, and photometric magnitudes. The atmospheric structures (the density and temperature stratification) are available as well. All these data are publicly accessible through the PoWR website. KW - stars: massive KW - stars: early-type KW - stars: atmospheres KW - stars: winds KW - outflows KW - stars: mass-loss KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201833787 SN - 1432-0746 VL - 621 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramachandran, Varsha A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Shenar, T. A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gallagher, John S. T1 - Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission. KW - stars: early-type KW - Magellanic Clouds KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731093 SN - 1432-0746 SN - 0004-6361 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Pasemann, Diana A1 - Todt, Helge Tobias A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526241 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER -