TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2021.822024 SN - 1664-042X VL - 12 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 774 KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557567 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri Mirzanag, Ehsan A1 - Granacher, Urs A1 - de Souza Castelo Oliveira, Anderson T1 - The Impact of COVID-19 and Muscle Fatigue on Cardiorespiratory Fitness and Running Kinetics in Female Recreational Runners T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6–20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 806 KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus infection KW - COVID-19 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572020 SN - 1866-8364 IS - 806 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri Mirzanag, Ehsan A1 - Granacher, Urs A1 - de Souza Castelo Oliveira, Anderson T1 - The Impact of COVID-19 and Muscle Fatigue on Cardiorespiratory Fitness and Running Kinetics in Female Recreational Runners JF - Frontiers in Physiology N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6–20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus infection KW - COVID-19 Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.942589 SN - 1664-042X VL - 13 SP - 1 EP - 10 PB - Frontiers CY - Lausanne, Schweiz ER -