TY - JOUR A1 - Heeschen, Katja U. A1 - Janocha, Julian A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Giese, Ronny T1 - The impact of ice on the tensile strength of unconsolidated sand BT - a model for gas hydrate-bearing sands? JF - Marine and petroleum geology N2 - Tensile strength is an important parameter when it comes to predictions of potential fracturing of sediments by natural processes such as the emplacement of ice or gas hydrate lenses, as well as anthropogenic fracturing or else the stability of engineering constructions such as boreholes. Yet, tensile strength (sigma(tau)) measurements of unconsolidated ice-bearing or gas hydrate-bearing sands are scarce and affected by a large variability.
In the course of the SUGAR project we successfully used ice as a model for pore-filling and "load-bearing" gas hydrate in sand to determine compressional wave velocity. We were thus able to verify comparable formation characteristics and morphologies of ice and gas hydrate within the pore space. As these are important values for the tensile strength of ice/hydrate-bearing sands, ice was also used as a model for hydrate-bearing sands, despite differences in the mechanical behavior and strength of pure ice and gas hydrate. Water-saturated sand cores with ice saturations (S-ice) between 0 and 100% were tested at -6.8 degrees C. The varying S-ice were a result of the freezing point depression caused by saline solutions of different concentrations. The sigma(tau) was directly determined using a sleeve-fracturing test with an internal pressure that was created within the frozen samples. The setup was also adapted to fit a pressure vessel for tests using confining pressure.
The correlation of S-ice - sigma(tau) shows an exponential increase of sigma(tau) with S-ice. Whereas at S-ice < 60% the increase is small, it is large at S-ice > 80%. In conjunction with the change in strength, the viscoelastic behavior changes. A clear peak strength occurs at S-ice > 80%. We conclude that given 60% < S-ice < 80% the pore-filling morphology of the ice converts into a frame-building habitus and at S-ice > 80% the frame gains strength while the amount of residual water decreases. Tensile failure and cracking now exceed grain boundary sliding as the prevailing failure mode. The ice morphology in the sand is non-cementing and comparable to a gas hydrate-sand mixture. KW - tensile strength KW - ice-grain mixture KW - gas hydrate KW - saline permafrost KW - ice KW - frozen soil Y1 - 2020 U6 - https://doi.org/10.1016/j.marpetgeo.2020.104607 SN - 0264-8172 SN - 1873-4073 VL - 122 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical simulation of hydrate formation in the LArge-Scale Reservoir Simulator (LARS) JF - Energies : open-access journal of related scientific research, technology development and studies in policy and management N2 - The LArge-scale Reservoir Simulator (LARS) has been previously developed to study hydrate dissociation in hydrate-bearing systems under in-situ conditions. In the present study, a numerical framework of equations of state describing hydrate formation at equilibrium conditions has been elaborated and integrated with a numerical flow and transport simulator to investigate a multi-stage hydrate formation experiment undertaken in LARS. A verification of the implemented modeling framework has been carried out by benchmarking it against another established numerical code. Three-dimensional (3D) model calibration has been performed based on laboratory data available from temperature sensors, fluid sampling, and electrical resistivity tomography. The simulation results demonstrate that temperature profiles, spatial hydrate distribution, and bulk hydrate saturation are consistent with the observations. Furthermore, our numerical framework can be applied to calibrate geophysical measurements, optimize post-processing workflows for monitoring data, improve the design of hydrate formation experiments, and investigate the temporal evolution of sub-permafrost methane hydrate reservoirs. KW - methane hydrate KW - temperature sensor KW - electrical resistivity tomography KW - hydrate formation KW - numerical simulation Y1 - 2022 U6 - https://doi.org/10.3390/en15061974 SN - 1996-1073 VL - 15 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Weber, Michael H. A1 - Zetsche, F. A1 - Ryberg, Trond A1 - Schulze, A. A1 - Spangenberg, Erik A1 - Huenges, Ernst T1 - Seismic detection limits of small, deep, man-made reflectors : a test at a geothermal site in northern Germany N2 - A key question for the development of geothermal plants is the seismic detection and monitoring of fluid injections at several kilometers depth. The detection and monitoring limits are controlled by several parameters, for example, the strength of seismic sources, number of receivers, vertical stacking, and noise conditions. For a known reference reflector at 2.66 km depth at a geothermal site in northern Germany the results of a simple surface seismic experiment were therefore combined with numerical forward modeling for different injection scenarios at 3.8 km depth. The underlying idea is that changes of reflectivity from the injection at 3.8 km must be larger than the variance of the measurements to be observable. Assuming that the injection at 3.8 km depth would produce a subhorizontal disklike target with a fracture porosity of 2% or 5% (the critical porosity) the water injection volume has to be at least 443 and 115 m(3), respectively, to be detectable from the surface. If the injection on the other hand does not create subhorizontal but subvertical pathways or only reduces the seismic velocities via the increased pore pressure in the immediate vicinity of the bore hole, the injection is undetectable from the surface. The most promising approach is therefore to move sources and/or receivers closer to the target, that is, the use of borehole instrumentation Y1 - 2005 SN - 0037-1106 ER -