TY - JOUR A1 - Stevanato, Luca A1 - Baroni, Gabriele A1 - Oswald, Sascha A1 - Lunardon, Marcello A1 - Mareš, Vratislav A1 - Marinello, Francesco A1 - Moretto, Sandra A1 - Polo, Matteo A1 - Sartori, Paolo A1 - Schattan, Paul A1 - Rühm, Werner T1 - An alternative incoming correction for cosmic-ray neutron sensing observations using local muon measurement JF - Geophysical research letters N2 - Measuring the variability of incoming neutrons locally would be usefull for the cosmic-ray neutron sensing (CRNS) method. As the measurement of high energy neutrons is not so easy, alternative particles can be considered for such purpose. Among them, muons are particles created from the same cascade of primary cosmic-ray fluxes that generate neutrons at the ground. In addition, they can be easily detected by small and relatively inexpensive detectors. For these reasons they could provide a suitable local alternative to incoming corrections based on remote neutron monitor data. The reported measurements demonstrated that muon detection system can detect incoming cosmic-ray variations locally. Furthermore the precision of this measurement technique is considered adequate for many CRNS applications. KW - CRNS KW - soil-moisture KW - neutrons KW - muons KW - cosmic-rays Y1 - 2022 U6 - https://doi.org/10.1029/2021GL095383 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Weimar, Jannis A1 - Köhli, Markus A1 - Budach, Christian A1 - Schmidt, Ulrich T1 - Large-scale boron-lined neutron detection systems as a 3He alternative for Cosmic Ray Neutron Sensing JF - Frontiers in water N2 - Cosmic-Ray neutron sensors are widely used to determine soil moisture on the hectare scale. Precise measurements, especially in the case of mobile application, demand for neutron detectors with high counting rates and high signal-to-noise ratios. For a long time Cosmic Ray Neutron Sensing (CRNS) instruments have relied on He-3 as an efficient neutron converter. Its ongoing scarcity demands for technological solutions using alternative converters, which are Li-6 and B-10. Recent developments lead to a modular neutron detector consisting of several B-10-lined proportional counter tubes, which feature high counting rates via its large surface area. The modularity allows for individual shieldings of different segments within the detector featuring the capability of gaining spectral information about the detected neutrons. This opens the possibility for active signal correction, especially useful when applied to mobile measurements, where the influence of constantly changing near-field to the overall signal should be corrected. Furthermore, the signal-to-noise ratio could be increased by combining pulse height and pulse length spectra to discriminate between neutrons and other environmental radiation. This novel detector therefore combines high-selective counting electronics with large-scale instrumentation technology. KW - CRNS KW - neutron KW - detector KW - soil moisture KW - readout electronics KW - boron-10 KW - helium-3 alternative Y1 - 2020 U6 - https://doi.org/10.3389/frwa.2020.00016 SN - 2624-9375 VL - 2 PB - Frontiers Media CY - Lausanne ER -