TY - JOUR A1 - Schaldach, Rüdiger A1 - Wimmer, Florian A1 - Koch, Jennifer A1 - Volland, Jan A1 - Geissler, Katja A1 - Köchy, Martin T1 - Model-based analysis of the environmental impacts of grazing management on Eastern Mediterranean ecosystems in Jordan JF - Journal of environmental management N2 - Eastern Mediterranean ecosystems are prone to desertification when under grazing pressure. Therefore, management of grazing intensity plays a crucial role to avoid or to diminish land degradation and to sustain both livelihoods and ecosystem functioning. The dynamic land-use model LandSHIFT was applied to a case study on the country level for Jordan. The impacts of different stocking densities on the environment were assessed through a set of simulation experiments for various combinations of climate input and assumptions about the development of livestock numbers. Indicators used for the analysis include a set of landscape metrics to account for habitat fragmentation and the "Human Appropriation of Net Primary Production" (HANPP), i.e., the difference between the amount of net primary production (NPP) that would be available in a natural ecosystem and the amount of NPP that remains under human management. Additionally, the potential of the economic valuation of ecosystem services, including landscape and grazing services, as an analysis concept was explored. We found that lower management intensities had a positive effect on HANPP but at the same time resulted in a strong increase of grazing area. This effect was even more pronounced under climate change due to a predominantly negative effect on the biomass productivity of grazing land. Also Landscape metrics tend to indicate decreasing habitat fragmentation as a consequence of lower grazing pressure. The valuation of ecosystem services revealed that low grazing intensity can lead to a comparatively higher economic value on the country level average. The results from our study underline the importance of considering grazing management as an important factor to manage dry-land ecosystems in a sustainable manner. KW - Sustainable management of Mediterranean grazing land KW - Land-use modeling KW - Climate change KW - Landscape metrics KW - Ecosystem service value KW - Human Appropriation of Net Primary Production (HANPP) Y1 - 2013 U6 - https://doi.org/10.1016/j.jenvman.2012.11.024 SN - 0301-4797 SN - 1095-8630 VL - 127 IS - 9 SP - S84 EP - S95 PB - Elsevier CY - London ER - TY - JOUR A1 - Plue, Jan A1 - De Frenne, Pieter A1 - Acharya, Kamal P. A1 - Brunet, Jorg A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente J. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lemke, Isgard A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Shevtsova, Anna A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Cousins, Sara A. O. T1 - Climatic control of forest herb seed banks along a latitudinal gradient JF - Global ecology and biogeography : a journal of macroecology N2 - Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses. KW - Climate change KW - interspecific variation KW - plant-climate interaction KW - seed longevity KW - seed production KW - temperate deciduous forest KW - temperature Y1 - 2013 U6 - https://doi.org/10.1111/geb.12068 SN - 1466-822X SN - 1466-8238 VL - 22 IS - 10 SP - 1106 EP - 1117 PB - Wiley-Blackwell CY - Hoboken ER -