TY - GEN A1 - Leimkühler, Silke T1 - The biosynthesis of the molybdenum cofactors in Escherichia coli T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5 '-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1433 KW - periplasmic nitrate reductase KW - biotin sulfoxide reductase KW - in-vitro-synthesis KW - n-oxide reductase KW - crystal-structure KW - molybdopterin synthase KW - formate dehydrogenase KW - rhodobacter-capsulatus KW - xanthine dehydrogenase KW - converting factor Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516559 SN - 1866-8372 IS - 6 ER - TY - GEN A1 - Ogunkola, Moses Olalekan A1 - Guiraudie-Capraz, Gaelle A1 - Féron, François A1 - Leimkühler, Silke T1 - The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1307 KW - Moco biosynthesis KW - sulfite oxidase KW - cytosolic tRNA thiolation KW - 5-methoxycarbonylmethyl-2-thiouridine KW - H2S biosynthesis KW - cellular bioenergetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-579580 SN - 1866-8372 IS - 1307 ER - TY - GEN A1 - Tiedemann, Kim A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke T1 - The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1268 KW - bis-MGD KW - chaperone KW - molybdenum cofactor KW - TMAO reductase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561728 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Badalyan, Artavazd A1 - Dierich, Marlen A1 - Stiba, Konstanze A1 - Schwuchow, Viola A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers BT - biosensors for benzaldehyde and GABA T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1082 KW - redox polymer KW - aldehyde oxidoreductase KW - ionic strength KW - benzaldehyde KW - GABA KW - biosensor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475070 SN - 1866-8372 IS - 1082 ER - TY - GEN A1 - Leimkühler, Silke A1 - Bühning, Martin A1 - Beilschmidt, Lena T1 - Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1015 KW - tRNA KW - molybdenum cofactor KW - persulfide KW - thiocarboxylate KW - thionucleosides KW - sulfurtransferase KW - l-cysteine desulfurase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475011 SN - 1866-8372 IS - 1015 ER - TY - GEN A1 - Otto, Nils A1 - Marelja, Zvonimir A1 - Schoofs, Andreas A1 - Kranenburg, Holger A1 - Bittern, Jonas A1 - Yildirim, Kerem A1 - Berh, Dimitri A1 - Bethke, Maria A1 - Thomas, Silke A1 - Rode, Sandra A1 - Risse, Benjamin A1 - Jiang, Xiaoyi A1 - Pankratz, Michael A1 - Leimkühler, Silke A1 - Klämbt, Christian T1 - The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 975 KW - molybdenum cofactor deficiency KW - blood-brain-barrier KW - larval locomotion KW - energy-metabolism KW - cerebral-cortex KW - astrocytes KW - behavior KW - cells KW - transmission KW - disease KW - Diseases of the nervous system KW - Glial biology KW - Glial development KW - Neurotransmitters Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426205 SN - 1866-8372 IS - 975 ER - TY - GEN A1 - Riedel, Simona A1 - Siemiatkowska, Beata A1 - Watanabe, Mutsumi A1 - Müller, Christina S. A1 - Schünemann, Volker A1 - Hoefgen, Rainer A1 - Leimkühler, Silke T1 - The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The mitochondrial ATP-binding cassette (ABC) transporters ABCB7 in humans, Atm1 in yeast and ATM3 in plants, are highly conserved in their overall architecture and particularly in their glutathione binding pocket located within the transmembrane spanning domains. These transporters have attracted interest in the last two decades based on their proposed role in connecting the mitochondrial iron sulfur (Fe–S) cluster assembly with its cytosolic Fe–S cluster assembly (CIA) counterpart. So far, the specific compound that is transported across the membrane remains unknown. In this report we characterized the ABCB7-like transporter Rcc02305 in Rhodobacter capsulatus, which shares 47% amino acid sequence identity with its mitochondrial counterpart. The constructed interposon mutant strain in R. capsulatus displayed increased levels of intracellular reactive oxygen species without a simultaneous accumulation of the cellular iron levels. The inhibition of endogenous glutathione biosynthesis resulted in an increase of total glutathione levels in the mutant strain. Bioinformatic analysis of the amino acid sequence motifs revealed a potential aminotransferase class-V pyridoxal-50-phosphate (PLP) binding site that overlaps with the Walker A motif within the nucleotide binding domains of the transporter. PLP is a well characterized cofactor of L-cysteine desulfurases like IscS and NFS1 which has a role in the formation of a protein-bound persulfide group within these proteins. We therefore suggest renaming the ABCB7-like transporter Rcc02305 in R. capsulatus to PexA for PLP binding exporter. We further suggest that this ABC-transporter in R. capsulatus is involved in the formation and export of polysulfide species to the periplasm. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 740 KW - ABCB7 KW - persulfide KW - polysulfide KW - glutathione KW - ABC transporter KW - Walker A motif KW - pyridoxal-50-phosphate Y1 - 1019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434975 SN - 1866-8372 IS - 740 ER - TY - GEN A1 - McKenna, Shane M. A1 - Leimkühler, Silke A1 - Herter, Susanne A1 - Turner, Nicholas J. A1 - Carnell, Andrew J. T1 - Enzyme cascade reactions BT - synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem N2 - A one-pot tandem enzyme reaction using galactose oxidase M3–5 and aldehyde oxidase PaoABC was used to convert hydroxymethylfurfural (HMF) to the pure bioplastics precursor FDCA in 74% isolated yield. A range of alcohols was also converted to carboxylic acids in high yield under mild conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 300 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102271 SP - 3271 EP - 3275 ER - TY - GEN A1 - Bechi, Beatrice A1 - Herter, Susanne A1 - McKenna, Shane A1 - Riley, Christopher A1 - Leimkühler, Silke A1 - Turner, Nicholas J. A1 - Carnell, Andrew J. T1 - Catalytic bio–chemo and bio–bio tandem oxidation reactions for amide and carboxylic acid synthesis N2 - A catalytic toolbox for three different water-based one-pot cascades to convert aryl alcohols to amides and acids and cyclic amines to lactams, involving combination of oxidative enzymes (monoamine oxidase, xanthine dehydrogenase, galactose oxidase and laccase) and chemical oxidants (TBHP or CuI(cat)/H2O2) at mild temperatures, is presented. Mutually compatible conditions were found to afford products in good to excellent yields. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 282 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99414 ER - TY - GEN A1 - Schumann, Silvia A1 - Terao, Mineko A1 - Garattini, Enrico A1 - Saggu, Miguel A1 - Lendzian, Friedhelm A1 - Hildebrandt, Peter A1 - Leimkühler, Silke T1 - Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1 N2 - Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Eschericia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 134 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45030 ER -