TY - JOUR A1 - Kolmakova, Olesya V. A1 - Gladyshev, Michail I. A1 - Fonvielle, Jeremy Andre A1 - Ganzert, Lars A1 - Hornick, Thomas A1 - Grossart, Hans-Peter T1 - Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling JF - Environmental microbiology N2 - Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh C-13-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter. Y1 - 2018 U6 - https://doi.org/10.1111/1462-2920.14418 SN - 1462-2912 SN - 1462-2920 VL - 21 IS - 1 SP - 34 EP - 49 PB - Wiley CY - Hoboken ER -