TY - JOUR A1 - Biterova, Ekaterina A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Alanen, Heli I. A1 - Saaranen, Mirva A1 - Ruddock, Lloyd W. T1 - Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease JF - Scientific reports N2 - Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-25237-7 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Biterova, Ekaterina A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Alanen, Heli I. A1 - Saaranen, Mirva A1 - Ruddock, Lloyd W. T1 - Structures of Angptl3 and Angptl4 BT - modulators of triglyceride levels and coronary artery disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1048 KW - angiopoitin-like 4 KW - of-function mutations KW - cardiovascular-disease KW - lipoprotein-lipase KW - heart-disease KW - risk KW - recognition KW - protein KW - metaanalysis KW - association KW - cardiovascular biology KW - x-ray crystallography Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-467943 SN - 1866-8372 IS - 1048 ER - TY - THES A1 - Esmaeeli Moghaddam Tabalvandani, Mariam T1 - ROS Generation in Human Aldehyde Oxidase And the Effects of ROS and Reactive Sulfhydryl on the Activity of the Enzyme T1 - ROS-Erzeugung in Humane Aldehydoxidase und die Auswirkungen von ROS und reaktivem Sulfhydryl auf die Aktivität des Enzyms N2 - Aldehyde oxidases (AOXs) (E.C. 1.2.3.1) are molybdoflavo-enzymes belonging to the xanthine oxidase (XO) family. AOXs in mammals contain one molybdenum cofactor (Moco), one flavin adenine dinucleotide (FAD) and two [2Fe-2S] clusters, the presence of which is essential for the activity of the enzyme. Human aldehyde oxidase (hAOX1) is a cytosolic enzyme mainly expressed in the liver. hAOX1is involved in the metabolism of xenobiotics. It oxidizes aldehydes to their corresponding carboxylic acids and hydroxylates N-heterocyclic compounds. Since these functional groups are widely present in therapeutics, understanding the behaviour of hAOX1 has important implications in medicine. During the catalytic cycle of hAOX1, the substrate is oxidized at Moco and electrons are internally transferred to FAD via the FeS clusters. An electron acceptor juxtaposed to the FAD receives the electrons and re-oxidizes the enzyme for the next catalytic cycle. Molecular oxygen is the endogenous electron acceptor of hAOX1 and in doing so it is reduced and produces reactive oxygen species (ROS) including hydrogen peroxide (H2O2) and superoxide (O2.-). The production of ROS has patho-physiological importance, as ROS can have a wide range of effects on cell components including the enzyme itself. In this thesis, we have shown that hAOX1 loses its activity over multiple cycles of catalysis due to endogenous ROS production and have identified a cysteine rich motif that protects hAOX1 from the ROS damaging effects. We have also shown that a sulfido ligand, which is bound at Moco and is essential for the catalytic activity of the enzyme, is vulnerable during turnover. The ROS produced during the course of the reaction are also able to remove this sulfido ligand from Moco. ROS, in addition, oxidize particular cysteine residues. The combined effects of ROS on the sulfido ligand and on specific cysteine residues in the enzyme result in its inactivation. Furthermore, we report that small reducing agents containing reactive sulfhydryl groups, in a selective manner, inactivate some of the mammalian AOXs by modifying the sulfido ligand at Moco. The mechanism of ROS production by hAOX1 is another scope that has been investigated as part of the work in this thesis. We have shown that the ratio of type of ROS, i.e. hydrogen peroxide (H2O2) and superoxide (O2.-), produced by hAOX1 is determined by a particular position on a flexible loop that locates in close proximity of FAD. The size of the cavity at the ROS producing site, i.e. the N5 position of the FAD isoalloxazine ring, kinetically affects the amount of each type of ROS generated by hAOX1. Taken together, hAOX1 is an enzyme with emerging importance in pharmacological and medical studies, not only due to its involvement in drug metabolism, but also due to ROS production which has physiological and pathological implications. N2 - Aldehyd-Oxidasen (AOXs) (E.C. 1.2.3.1) sind Molybdo-Flavo-Enzyme aus der Familie der Xanthin-Oxidasen (XO). AOXs in Säugetieren enthalten einen Molybdän-Cofaktor (Moco), ein Flavin-Adenosin-Dinukleotid (FAD) und zwei [2Fe-2S]-Cluster, deren Anwesenheit für die Aktivität des Enzyms essentiell ist. Die Humane Aldehyd-Oxidase (hAOX1) ist ein zytosolisches Enzym, das hauptsächlich in der Leber exprimiert wird und am Stoffwechsel von Xenobiotika beteiligt ist. hAOX1 oxidiert Aldehyde zu ihren entsprechenden Carbonsäuren und hydroxyliert N-heterocyclische Verbindungen. Da diese funktionellen Gruppen in Therapeutika weit verbreitet sind, hat das Verständnis des Verhaltens von hAOX1 wichtige Auswirkungen auf medizinische Studien. Während des Katalysezyklus von hAOX1 wird das Substrat an Moco oxidiert und die Elektronen werden über die FeS-Cluster intern auf FAD übertragen. Ein Elektronenakzeptor am FAD nimmt die Elektronen auf und re-oxidiert das Enzym für den nächsten Katalysezyklus. Molekularer Sauerstoff ist der endogene Elektronenakzeptor von hAOX1, der reduziert wird und reaktive Sauerstoffspezies (ROS) einschließlich Wasserstoffperoxid (H2O2) und Superoxid (O2.-) produziert. Die Produktion von ROS hat pathophysiologische Bedeutung mit weitreichenden Auswirkungen auf die Zellbestandteile und das Enzym selbst. In der vorliegenden Arbeit haben wir gezeigt, dass hAOX1 aufgrund der endogenen ROS-Produktion seine Aktivität über mehrere Katalysezyklen verliert und haben ein Cystein-reiches Motiv identifiziert, das hAOX1 vor den ROS-schädigenden Wirkungen schützt. Wir haben auch gezeigt, dass ein an Moco gebundener und für die katalytische Aktivität des Enzyms essentieller Sulfidoligand unter reduzierenden Bedingungen anfällig ist. Die im Verlauf der Reaktion entstehenden ROS sind in der Lage, diesen Sulfidoliganden aus dem Moco zu entfernen. ROS oxidieren auch bestimmte Cysteinreste. Die kombinierten Effekte von ROS auf den Sulfidoliganden und Cysteine führen zu einer Inaktivierung des Enzyms. Darüber hinaus berichten wir, dass Reduktionsmittel, die eine reaktive Sulfhydrylgruppe enthalten, selektiv einige der Säuger-AOX inaktivieren, indem sie den Sulfidoliganden beim Moco modifizieren. Der Mechanismus der ROS-Produktion durch hAOX1 ist ein weiterer Bereich, der im Rahmen dieser Arbeit untersucht wurde. Wir haben gezeigt, dass die Art von ROS, d. h. Wasserstoffperoxid (H2O2) und Superoxid (O2.-), die von hAOX1 produziert wird, durch eine bestimmte Position auf einem flexiblen Loop bestimmt wird, die sich in der Nähe von FAD befindet. Es scheint, dass die Größe der Kavität an der ROS-produzierenden Stelle, d. h. die N5-Position des FAD-Isoalloxazin-Rings, die Menge jedes ROS-Typs, der von hAOX1 erzeugt wird, kinetisch beeinflusst. Zusammenfassend ist hAOX1 ein Enzym mit zunehmender Bedeutung in pharmakologischen und medizinischen Studien, nicht nur aufgrund seiner Beteiligung am Arzneimittelstoffwechsel, sondern auch aufgrund der ROS-Produktion, die physiologische und pathologische Auswirkungen hat. KW - human aldehyde oxidase KW - reactive oxygen species (ROS) KW - Aldehydoxidase KW - reaktive Sauerstoffspezies (ROS) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-534600 ER - TY - JOUR A1 - De Sousa Mota, Cristiano A1 - Diniz, Ana A1 - Coelho, Catarina A1 - Santos-Silva, Teresa A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Leimkühler, Silke A1 - Cabrita, Eurico J. A1 - Marcelo, Filipa A1 - Romão, Maria João T1 - Interrogating the inhibition mechanisms of human aldehyde oxidase by X-ray crystallography and NMR spectroscopy BT - the raloxifene case JF - Journal of medicinal chemistry / American Chemical Society N2 - Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jmedchem.1c01125 SN - 0022-2623 SN - 1520-4804 VL - 64 IS - 17 SP - 13025 EP - 13037 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mota, Cristiano A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Coelho, Catarina A1 - Santos-Silva, Teresa A1 - Wolff, Martin A1 - Foti, Alessandro A1 - Leimkühler, Silke A1 - Romao, Maria Joao T1 - Human aldehyde oxidase (hAOX1) BT - structure determination of the Moco-free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms JF - FEBS Open Bio N2 - Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 degrees C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. EnzymesAldehyde oxidase (); xanthine dehydrogenase (); xanthine oxidase (). DatabasesStructural data are available in the Protein Data Bank under the accession number . KW - human aldehyde oxidase KW - molybdenum cofactor KW - single nucleotide polymorphism KW - xanthine oxidase Y1 - 2019 U6 - https://doi.org/10.1002/2211-5463.12617 SN - 2211-5463 VL - 9 IS - 5 SP - 925 EP - 934 PB - Wiley CY - Hoboken ER -