TY - JOUR A1 - Kübler, Simon A1 - Streich, R. A1 - Lück, Erika A1 - Hoffmann, M. A1 - Friedrich, A. M. A1 - Strecker, Manfred T1 - Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - The Lower Rhine Graben (Central Europe) is a prime example of a seismically active low-strain rift zone characterized by pronounced anthropogenic and climatic overprint of structures, and long recurrence intervals of large earthquakes. These factors render the identification of active faults and surface ruptures difficult. We investigated two fault scarps in the Lower Rhine Graben, to decipher their structural character, offset and potential seismogenic origin. Both scarps were modified by anthropogenic activity. The Hemmerich site lies c. 20 km SW of Cologne, along the Erft Fault. The Untermaubach site lies SW of Duren, where the Schafberg Fault projects into the Rur River valley. At the Hemmerich site, geomorphic and geophysical data, as well as exploratory coring reveal evidence of repeated normal faulting. Geophysical analysis and palaeoseismological excavation at the Untermaubach site reveal a complex fault zone in Holocene gravels characterized by subtle gravel deformation. Differentiation of tectonic and fluvial features was only possible with trenching, because fault structures and grain sizes of the sediments were below the resolution of the geophysical data. Despite these issues, our investigation demonstrates that valuable insight into past earthquakes and seismogenic deformation in a low-strain environment can be revealed using a multidisciplinary approach. Y1 - 2017 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.11 SN - 0305-8719 VL - 432 SP - 127 EP - 146 PB - The Geological Society CY - London ER - TY - JOUR A1 - Guillemoteau, Julien A1 - Lück, Erika A1 - Tronicke, Jens T1 - 1D inversion of direct current data acquired with a rolling electrode system JF - Journal of applied geophysics N2 - Direct current systems employing a kinematic surveying strategy allow to analyze the electrical resistivity of the subsurface for large areas (i.e., several hectares). Typical applications are found in precision agriculture, archaeological prospecting and soil sciences. With the typical survey setting, the collected data sets are often characterized by a rather high level of noise and a rather coarse lateral sampling compared to data acquired with fixed electrodes. We therefore present an efficient one-dimensional inversion approach in which we put special attention on modeling the effects of noise. We apply this method to data recorded with a five-offset equatorial dipole-dipole system employing rolling electrodes. By performing several synthetic tests with realistic noise levels, we found that the considered five-configuration soundings allow for a reliable imaging of two-layer cases in the uppermost two meters of the subsurface, where the subsurface can be assumed to follow a horizontally layered geometry within 3 m around the system. By analyzing the corresponding sensitivity functions, we also show that the equatorial dipole-dipole array is relatively well suited for a 1D inversion approach compared to standard in-line electrode arrays. To illustrate this aspect, we show that our method can provide results similar to those obtained with a 2D Wenner imaging procedure for data recorded across a well-constrained 2D target. We finally apply our method to a large five-offset data set acquired in an agricultural study. The final pseudo-3D model of electrical resistivity is in accordance with borehole data available for the surveyed area. Our results demonstrate the applicability and the versatility of the presented inversion approach for large-scale data sets as they are typically collected with such rolling electrode systems. (C) 2017 Elsevier B.V. All rights reserved. Y1 - 2017 U6 - https://doi.org/10.1016/j.jappgeo.2017.09.010 SN - 0926-9851 SN - 1879-1859 VL - 146 SP - 167 EP - 177 PB - Elsevier CY - Amsterdam ER -