TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes JF - Ecography N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 SN - 1600-0587 VL - 44 IS - 10 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Schneeberger, Karin A1 - Schulze, Michael A1 - Scheffler, Ingo A1 - Caspers, Barbara A. T1 - Evidence of female preference for odor of distant over local males in a bat with female dispersal JF - Behavioral ecology : the official journal of the International Society for Behavioral Ecology N2 - Geographic variation of sexually selected male traits is common in animals. Female choice also varies geographically and several studies found female preference for local males, which is assumed to lead to local adaptation and, therefore, increases fitness. As females are the nondispersing sex in most mammalian taxa, this preference for local males might be explained by the learning of male characteristics. Studies on the preference of females in female-dispersing species are lacking so far. To find out whether such females would also show preferences for local males, we conducted a study on greater sac-winged bats (Saccopteryx bilineata), a species where females disperse and males stay in their natal colony. Male greater sac-winged bats possess a wing pouch that is filled with odoriferous secretion and fanned toward females during courtship display. In a combination of chemical analysis and behavioral preference tests, we analyzed whether the composition of wing sac secretion varies between two geographically distinct populations (300 km), and whether females show a preference for local or distant male scent. Using gas chromatography, we found significant differences in the composition of the wing sac odors between the two geographically distinct populations. In addition, the behavioral preference experiments revealed that females of both populations preferred the scent of geographically distant males over local males. The wing sac odor might thus be used to guarantee optimal outbreeding when dispersing to a new colony. This is-to our knowledge-the first study on odor preference of females of a species with female-biased dispersal. KW - bats KW - dispersal KW - female preference KW - male philopatry KW - odor KW - olfaction Y1 - 2021 U6 - https://doi.org/10.1093/beheco/arab003 SN - 1045-2249 SN - 1465-7279 VL - 32 IS - 4 SP - 657 EP - 661 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR BT - an R package for individual-based simulation of spatial changes JF - Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 U6 - https://doi.org/10.1111/ecog.05689 SN - 1600-0587 VL - 44 IS - 10 SP - 1443 EP - 1452 PB - Wiley-Blackwell CY - Oxford [u.a.] ER -