TY - JOUR A1 - Fazeli, Mohammadreza A1 - Hinebaugh, James A1 - Fishman, Zachary A1 - Tötzke, Christian A1 - Lehnert, Werner A1 - Manke, Ingo A1 - Bazylak, Aimy T1 - Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers JF - Journal of power sources : the international journal on the science and technology of electrochemical energy systems N2 - Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions. (C) 2016 Elsevier B.V. All rights reserved. KW - Pore network modeling KW - Synchrotron X-ray KW - Computed tomography KW - Liquid water distribution KW - Gas diffusion layer KW - Compression Y1 - 2016 U6 - https://doi.org/10.1016/j.jpowsour.2016.10.039 SN - 0378-7753 SN - 1873-2755 VL - 335 SP - 162 EP - 171 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, Igor A1 - Garcés, Gonzales A1 - Requena, Guillermo A1 - Fernandez, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy JF - Materials Science and Engineering: A-Structural materials: properties, microstructure and processing N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Damage KW - Computed tomography Y1 - 2018 U6 - https://doi.org/10.1016/j.msea.2018.08.070 SN - 0921-5093 SN - 1873-4936 VL - 736 SP - 453 EP - 464 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials JF - Additive manufacturing N2 - While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS. KW - SLM KW - Ti-6Al-4V KW - X-ray synchrotron diffraction KW - Computed tomography KW - Residual stress Y1 - 2018 U6 - https://doi.org/10.1016/j.addma.2018.11.023 SN - 2214-8604 SN - 2214-7810 VL - 25 SP - 325 EP - 334 PB - Elsevier CY - Amsterdam ER -