TY - JOUR A1 - Otten, Cecile A1 - Knox, Jessica A1 - Boulday, Gwenola A1 - Eymery, Mathias A1 - Haniszewski, Marta A1 - Neuenschwander, Martin A1 - Radetzki, Silke A1 - Vogt, Ingo A1 - Haehn, Kristina A1 - De Luca, Coralie A1 - Cardoso, Cecile A1 - Hamad, Sabri A1 - Igual Gil, Carla A1 - Roy, Peter A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva A1 - von Kries, Jens P. A1 - Campillos, Monica A1 - Tournier-Lasserve, Elisabeth A1 - Derry, William Brent A1 - Abdelilah-Seyfried, Salim T1 - Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations JF - EMBO molecular medicine N2 - Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients. KW - angiogenesis KW - CCM KW - ERK5 KW - indirubin-3-monoxime KW - KLF2 Y1 - 2018 U6 - https://doi.org/10.15252/emmm.201809155 SN - 1757-4676 SN - 1757-4684 VL - 10 IS - 10 PB - Wiley CY - Hoboken ER - TY - THES A1 - Igual Gil, Carla T1 - Role of the GDF15-GFRAL pathway under skeletal muscle mitochondrial stress T1 - Funktion des GDF15-GFRAL Signaltransduktionsweges bei mitochondrialem Stress im Skelettmuskel N2 - Growth differentiation factor 15 (GDF15) is a stress-induced cytokine secreted into the circulation by a number of tissues under different pathological conditions such as cardiovascular disease, cancer or mitochondrial dysfunction, among others. While GDF15 signaling through its recently identified hindbrain-specific receptor GDNF family receptor alpha-like (GFRAL) has been proposed to be involved in the metabolic stress response, its endocrine role under chronic stress conditions is still poorly understood. Mitochondrial dysfunction is characterized by the impairment of oxidative phosphorylation (OXPHOS), leading to inefficient functioning of mitochondria and consequently, to mitochondrial stress. Importantly, mitochondrial dysfunction is among the pathologies to most robustly induce GDF15 as a cytokine in the circulation. The overall aim of this thesis was to elucidate the role of the GDF15-GFRAL pathway under mitochondrial stress conditions. For this purpose, a mouse model of skeletal muscle-specific mitochondrial stress achieved by ectopic expression of uncoupling protein 1 (UCP1), the HSA-Ucp1-transgenic (TG) mouse, was employed. As a consequence of mitochondrial stress, TG mice display a metabolic remodeling consisting of a lean phenotype, an improved glucose metabolism, an increased metabolic flexibility and a metabolic activation of white adipose tissue. Making use of TG mice crossed with whole body Gdf15-knockout (GdKO) and Gfral-knockout (GfKO) mouse models, this thesis demonstrates that skeletal muscle mitochondrial stress induces the integrated stress response (ISR) and GDF15 in skeletal muscle, which is released into the circulation as a myokine (muscle-induced cytokine) in a circadian manner. Further, this work identifies GDF15-GFRAL signaling to be responsible for the systemic metabolic remodeling elicited by mitochondrial stress in TG mice. Moreover, this study reveals a daytime-restricted anorexia induced by the GDF15-GFRAL axis under muscle mitochondrial stress, which is, mechanistically, mediated through the induction of hypothalamic corticotropin releasing hormone (CRH). Finally, this work elucidates a so far unknown physiological outcome of the GDF15-GFRAL pathway: the induction of anxiety-like behavior. In conclusion, this study uncovers a muscle-brain crosstalk under skeletal muscle mitochondrial stress conditions through the induction of GDF15 as a myokine that signals through the hindbrain-specific GFRAL receptor to elicit a stress response leading to metabolic remodeling and modulation of ingestive- and anxiety-like behavior. N2 - Der Wachstum- und Differenzierungsfaktor 15 (GDF15) ist ein stressinduziertes Zytokin, dass bei u.a. Krebs, kardiovaskulären oder mitochondrialer Erkrankungen in den betroffenen Geweben stark induziert und ins Blut sekretiert werden kann. Die endokrine Funktion von GDF15 sowie die Bedeutung des kürzlich identifizierten und spezifisch im Hirnstamm exprimierten GDF15-Rezeptors GFRAL (GDNF family receptor alpha-like) unter chronischen Stressbedingungen ist jedoch noch unzureichend verstanden. Mitochondrialer Stress ist durch eine Fehlfunktion der oxidativen Phosphorylierung (OXPHOS) charakterisiert, was eine ineffiziente ATP-Synthese und eine gestörte zelluläre Energiehomöostase zur Folge hat. Ziel der Doktorarbeit war es, die biologische Funktion des GDF15-GFRAL-Signalwegs unter mitochondrialen Stressbedingungen aufzuklären. Zu diesem Zweck wurde das etablierte transgene HSA-Ucp1-Mausmodel (TG) untersucht, welches durch eine chronisch verringerte OXPHOS-Effizienz spezifisch im Skelettmuskel sowie eine systemische Anpassung des Energiestoffwechsels charakterisiert ist. Dabei konnte in dieser Arbeit zunächst zeigt werden, dass mitochondrialer Stress im Skelettmuskel zell-autonom eine integrierte Stressantwort (ISR) induziert, wodurch die Expression und Sekretion von GDF15 in den Blutkreislauf als Myokin (muskelinduziertes Zytokin) stark erhöht wird. Zudem konnte erstmalig eine tageszeitliche Schwankung der muskulären Gdf15 Genexpression und der im Blut zirkulierenden GDF15-Level bei TG Mäusen identifiziert werden. Durch weiterführende Zuchtkreuzungen der TG-Mäuse mit konstitutiven Knockout-Mäusen (KO) zur Inaktivierung der Gene Gdf15 (GdKO) oder Gfral (GfKO), konnte zudem gezeigt werden, dass sowohl durch das zirkulierende GDF15 als auch die Aktivierung der GFRAL-Signalachse eine Tageszeit-abhängige Anorexie sowie die systemische Anpassung des Energiestoffwechsels im TG Mausmodell vermittelt werden. Mechanistisch konnte dabei erstmalig eine GFRAL-abhängige Induktion von Corticotropin-releasing Hormone (CRH) im Hypothalamus sowie ein erhöhtes, GFRAL-abhängiges Angstverhalten in TG Mäuse beschrieben werden. Zusammenfassend unterstreichen die Ergebnisse die systemische Rolle von GDF15 als Myokin und die Bedeutung der endokrinen Kommunikation zwischen Skelettmuskel und Gehirn, vermittelt durch GDF15-GFRAL Signalachse, für die Energiehomöostase bei mitochondrialer Fehlfunktion. Die gewonnen Erkenntnisse dieser Doktorarbeit können somit zur Entwicklung neuer Therapieansätze für Patienten mit einer mitochondrialen bzw. Stoffwechselerkrankung beitragen. KW - GDF15 KW - mitochondria KW - physiology KW - metabolism KW - GDF15 KW - Stoffwechsel KW - Mitochondrien KW - Physiologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-554693 ER - TY - GEN A1 - Igual Gil, Carla A1 - Ost, Mario A1 - Kasch, Juliane A1 - Schumann, Sara A1 - Heider, Sarah A1 - Klaus, Susanne T1 - Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1090 KW - skeletal-muscle KW - growth KW - induction KW - insulin KW - activation KW - increases KW - glucagon KW - health KW - gene KW - diet Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460541 SN - 1866-8372 IS - 1090 ER - TY - JOUR A1 - Igual Gil, Carla A1 - Ost, Mario A1 - Kasch, Juliane A1 - Schumann, Sara A1 - Heider, Sarah A1 - Klaus, Susanne T1 - Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice JF - Scientific reports N2 - Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-56922-w SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Klaus, Susanne A1 - Igual Gil, Carla A1 - Ost, Mario T1 - Regulation of diurnal energy balance by mitokines JF - Cellular and molecular life sciences : CMLS N2 - The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease. KW - Mitochondria KW - FGF21 KW - GDF15 KW - Circadian rhythm KW - Hormones KW - Nutrition Y1 - 2021 U6 - https://doi.org/10.1007/s00018-020-03748-9 SN - 1420-682X SN - 1420-9071 VL - 78 IS - 7 SP - 3369 EP - 3384 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Igual Gil, Carla A1 - Jarius, Mirko A1 - von Kries, Jens P. A1 - Rohlfing, Anne-Kartin T1 - Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans JF - Frontiers in physiology N2 - Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species. KW - aquaporin KW - osmoregulation KW - osmotic stress KW - chemosensation KW - C. elegans Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00380 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Ost, Mario A1 - Igual Gil, Carla A1 - Coleman, Verena A1 - Keipert, Susanne A1 - Efstathiou, Sotirios A1 - Vidic, Veronika A1 - Weyers, Miriam A1 - Klaus, Susanne T1 - Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress JF - EMBO reports N2 - Mitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1-TG mice show a skeletal muscle-specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1-TG mice does not affect muscle wasting or transcriptional cell-autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress-induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15-dependent daytime-restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress-induced GDF15 in the regulation of systemic energy metabolism. KW - anorexia KW - GDF15 KW - integrated stress response KW - mitochondrial dysfunction KW - muscle wasting Y1 - 2020 U6 - https://doi.org/10.15252/embr.201948804 SN - 1469-221X SN - 1469-3178 VL - 21 IS - 3 PB - Wiley CY - Hoboken ER -