TY - JOUR A1 - Kröner, Dominik A1 - Krüger, Hartmut A1 - Thesen, Manuel W. T1 - Electronic structure calculations for Hole-Transporting Triphenylamine Derivatives in Polymer Light-Emitting Diodes JF - Macromolecular theory and simulations N2 - Hole-transporting polymers based on polyethene-triphenylamine derivatives are investigated with respect to their UV/Vis spectra. Two substituents, N-phenyl-1-naphthylamine and carbazole, are examined as their respective polymer light-emitting diodes (PLEDs) show very different luminous efficiencies. In order to identify the origin of these phenomena electronic structure calculations based on TD-DFT were performed using monomer models of the hole-transporting polymers. In experiment these hole-transporting polymers show very specific differences in their absorption and emission (fluorescence and phosphorescence) spectra. The analysis of the simulated absorption and emission spectra, the MOs as well as the ground and excited state geometries give explanations for the different optical performances of the corresponding PLEDs. KW - charge transport KW - luminescence KW - organic light-emitting diodes KW - polystyrenes KW - quantum chemistry Y1 - 2011 U6 - https://doi.org/10.1002/mats.201100016 SN - 1022-1344 VL - 20 IS - 9 SP - 790 EP - 805 PB - Wiley-Blackwell CY - Malden ER - TY - GEN A1 - Dettmann, Sophie A1 - Huittinen, Nina Maria A1 - Jahn, Nicolas A1 - Kretzschmar, Jerome A1 - Kumke, Michael A1 - Kutyma, Tamara A1 - Lohmann, Janik A1 - Reich, Tobias A1 - Schmeide, Katja A1 - Azzam, Salim Shams Aldin A1 - Spittler, Leon A1 - Stietz, Janina T1 - Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8) T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The retention of actinides in different oxidation states (An(X), X = III, IV, VI) by a calcium-silicate-hydrate (C-S-H) phase with a Ca/Si (C/S) ratio of 0.8 was investigated in the presence of gluconate (GLU). The actinides considered were Am(III), Th(IV), Pu(IV), and U(VI). Eu(III) was investigated as chemical analogue for Am(III) and Cm(III). In addition to the ternary systems An(X)/GLU/C-S-H, also binary systems An(X)/C-S-H, GLU/C-S-H, and An(X)/GLU were studied. Complementary analytical techniques were applied to address the different specific aspects of the binary and ternary systems. Time-resolved laser-induced luminescence spectroscopy (TRLFS) was applied in combination with parallel factor analysis (PARAFAC) to identify retained species and to monitor species-selective sorption kinetics. ¹³C and ²⁹Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to determine the bulk structure and the composition of the C-S-H surface, respectively, in the absence and presence of GLU. The interaction of Th(IV) with GLU in different electrolytes was studied by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). The influence of GLU on An(X) retention was investigated for a large concentration range up to 10⁻² M. The results showed that GLU had little to no effect on the overall An(X) retention by C-S-H with C/S of 0.8, regardless of the oxidation state of the actinides. For Eu(III), the TRLFS investigations additionally implied the formation of a Eu(III)-bearing precipitate with dissolved constituents of the C-S-H phase, which becomes structurally altered by the presence of GLU. For U(VI) sorption on the C-S-H phase, only a small influence of GLU could be established in the luminescence spectroscopic investigations, and no precipitation of U(VI)-containing secondary phases could be identified. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1318 KW - actinide, organic ligand, sorption, cementitious material, concrete, luminescence KW - organic ligand KW - sorption KW - cementitious material KW - concrete KW - luminescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588455 SN - 1866-8372 IS - 1318 ER - TY - JOUR A1 - Dettmann, Sophie A1 - Huittinen, Nina Maria A1 - Nicolas, Jahn A1 - Kretzschmar, Jerome A1 - Kumke, Michael A1 - Kutyma, Tamara A1 - Lohmann, Janik A1 - Reich, Tobias A1 - Schmeide, Katja A1 - Azzam, Salim Shams Aldin A1 - Spittler, Leon A1 - Stietz, Janina T1 - Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8) JF - Frontiers in Nuclear Engineering N2 - The retention of actinides in different oxidation states (An(X), X = III, IV, VI) by a calcium-silicate-hydrate (C-S-H) phase with a Ca/Si (C/S) ratio of 0.8 was investigated in the presence of gluconate (GLU). The actinides considered were Am(III), Th(IV), Pu(IV), and U(VI). Eu(III) was investigated as chemical analogue for Am(III) and Cm(III). In addition to the ternary systems An(X)/GLU/C-S-H, also binary systems An(X)/C-S-H, GLU/C-S-H, and An(X)/GLU were studied. Complementary analytical techniques were applied to address the different specific aspects of the binary and ternary systems. Time-resolved laser-induced luminescence spectroscopy (TRLFS) was applied in combination with parallel factor analysis (PARAFAC) to identify retained species and to monitor species-selective sorption kinetics. ¹³C and ²⁹Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to determine the bulk structure and the composition of the C-S-H surface, respectively, in the absence and presence of GLU. The interaction of Th(IV) with GLU in different electrolytes was studied by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). The influence of GLU on An(X) retention was investigated for a large concentration range up to 10⁻² M. The results showed that GLU had little to no effect on the overall An(X) retention by C-S-H with C/S of 0.8, regardless of the oxidation state of the actinides. For Eu(III), the TRLFS investigations additionally implied the formation of a Eu(III)-bearing precipitate with dissolved constituents of the C-S-H phase, which becomes structurally altered by the presence of GLU. For U(VI) sorption on the C-S-H phase, only a small influence of GLU could be established in the luminescence spectroscopic investigations, and no precipitation of U(VI)-containing secondary phases could be identified. KW - actinide KW - organic ligand KW - sorption KW - cementitious material KW - concrete KW - luminescence Y1 - 2023 U6 - https://doi.org/10.3389/fnuen.2023.1124856 SN - 2813-3412 VL - 2 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 808 KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442433 SN - 1866-8372 IS - 808 ER - TY - JOUR A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2019 U6 - https://doi.org/10.1002/open.201900249 SN - 2191-1363 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH-Verl. CY - Weinheim ER - TY - JOUR A1 - Tao, Lumi A1 - Liu, Yuchuan A1 - Wu, Dan A1 - Wei, Qiao-Hua A1 - Taubert, Andreas A1 - Xie, Zailai T1 - Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity JF - Nanomaterials N2 - The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic–inorganic hybrid host. The organic–inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic–organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels. KW - ionic liquid KW - ionogel KW - carbon dots KW - organic–inorganic hybrid KW - luminescence KW - mechanical strength Y1 - 2020 U6 - https://doi.org/10.3390/nano10122521 SN - 2079-4991 VL - 10 IS - 12 PB - MDPI CY - Basel ER - TY - GEN A1 - Tao, Lumi A1 - Liu, Yuchuan A1 - Wu, Dan A1 - Wei, Qiao-Hua A1 - Taubert, Andreas A1 - Xie, Zailai T1 - Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic–inorganic hybrid host. The organic–inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic–organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1058 KW - ionic liquid KW - ionogel KW - carbon dots KW - organic–inorganic hybrid KW - luminescence KW - mechanical strength Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487334 SN - 1866-8372 IS - 1058 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Attallah, Ahmed G. A1 - Matthes, Philipp R. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Müller-Buschbaum, Klaus A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides JF - Chemistry - a European journal N2 - An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions. KW - adsorption KW - cadmium KW - ionic liquids KW - luminescence KW - metal-organic frameworks Y1 - 2016 U6 - https://doi.org/10.1002/chem.201504757 SN - 0947-6539 SN - 1521-3765 VL - 22 SP - 6905 EP - 6913 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Haubitz, Toni T1 - Transient absorption spectroscopy T1 - Transienten Absorptionsspektroskopie BT - a versatile tool for investigating excited states in organic and inorganic molecules BT - ein vielseitiges Werkzeug zur Untersuchung angeregter Zustände von organischen und anorganischen Molekülen N2 - The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·−2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone. N2 - Die optischen Eigenschaften von organischen Farbstoffen und optisch aktiven anorganischen Molekülen werden durch ihre chemische Struktur, ihrer chemischer Umgebung, und durch das Verhalten ihrer angeregten Zustände bestimmt. Die klassischen Methoden zur Untersuchung dieser Eigenschaften sind die Absorptions- und Lumineszenzspektroskopie. Obwohl beide Methoden leistungsfähig und einfach anzuwenden sind, stellen die fehlende Zeitauflösung respektive das benötigte Vorhandensein von Lumineszenz in gewissen Anwendungen ein Problem dar. Dies ist der Fall, wenn die zu untersuchenden Moleküle durch Löscheffekte keine Lumineszenz mehr aufweisen oder von vornherein nicht lumineszent sind. Unter diesen Umständen ist die Transientenabsorptionsspektroskopie eine exzellente Alternative. Dieses laserspektroskopische Anregungs-Abfrage-Verfahren ist für mechanistische Untersuchungen von Lumineszenz-Löschphänomenen und Photoreaktionen sehr gut geeignet. Aufgrund seiner extrem hohen Zeitauflösung im Femto- und Picosekundenbereich können Intermediate und transiente Spezies identifiziert und deren kinetische Entwicklung beobachtet werden. Da es sich außerdem eine aktive Abfrage des Probenzustands handelt, entfällt die Notwendigkeit von lumineszenten Probeneigenschaften. In dieser Arbeit konnten mittels Transientenabsorptionsspektroskopie die Lumineszenz-Löschmechanismen der organischen Farbstoffklassen O4-DBD, S4-DBD, und der Pyridylanthracene aufgeklärt werden. Bei all diesen Farbstoffen konnte die Bildung von Triplettzuständen als kompetitiver Mechanismus zur Lumineszenz identifiziert werden. Während bei den O4-DBD-Farbstoffen diese Verluste eher gering ausfallen, wird die Lumineszenz der S4-DBD-Farbstoffe fast vollständig gelöscht. Eine Triplettbildung konnte ebenfalls bei den Pyridylanthracenen beobachtet werden, sie hat jedoch einen eher moderaten Anteil am Löschverhalten der Lumineszenz. Der Hauptteil der Lumineszenz-Löschung der protonierten Pyridylanthracene wird eher durch zusätzliche nicht-strahlende Desaktivierungsprozesse über die Pyridylringe verursacht. Es konnte gezeigt werden, dass die Transientenabsorptionsspektroskopie für die Untersuchung des Löschverhaltens von Uranyl(VI)-Lumineszenz durch Chlorid und Bromid geeignet ist. Es wurde geschlussfolgert, dass die Reduktion der Halogenide durch angeregtes Uranyl(VI) zur Bildung von Dihalogenidradikalen X^(·−2). führt. Diese Redoxreaktion im angeregten Zustand wurde daher als Lumineszenz-Löschmechanismus für beide Halogenide identifiziert. Dieser diffusionslimitierte Mechanismus wird unter cryogenen Bedingungen oder in schwächeren dielektriktrischen Lösemitteln wie ACN oder Aceton unterdrückt. KW - spectroscopy KW - luminescence KW - dye KW - quenching KW - uranyl KW - DBD KW - transient KW - Spektroskopie KW - Lumineszenz KW - Farbstoff KW - Löschung KW - Uranyl KW - DBD KW - Transient Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535092 ER -