TY - JOUR A1 - Ahmadi, Hamid A1 - Herat, Nehara A1 - Alizadeh, Shahab A1 - Button, Duane C. A1 - Granacher, Urs A1 - Behm, David G. T1 - Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance JF - PLOS ONE / Public Library of Science N2 - Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1%, Z2p = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, Z2p = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force (Z2p = 0.61, p = 0.0009) during inversion (75%) than upright (65.3%) conditions. Overall, BFR decreased MVC force 4.8% (Z2p = 0.37, p = 0.05). For upright position, BFR induced 21.0% reductions in M-wave amplitude (Z2p = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40-60 s intervals and post-30-s MVC (upright< inversion, and without BFR< BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0245311 SN - 1932-6203 VL - 16 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study JF - Sensors N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - https://doi.org/10.3390/s20185104 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - GEN A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 3 KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484130 IS - 3 ER - TY - GEN A1 - Aloui, Ali A1 - Tayech, Amel A1 - Arbi Mejri, Mohamed A1 - Makhlouf, Issam A1 - Clark, Cain C. T. A1 - Granacher, Urs A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf T1 - Reliability and Validity of a New Taekwondo-Specific Change-of-Direction Speed Test With Striking Techniques in Elite Taekwondo Athletes: A Pilot Study T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The purpose of this study was to examine the test-retest reliability, and convergent and discriminative validity of a new taekwondo-specific change-of-direction (COD) speed test with striking techniques (TST) in elite taekwondo athletes. Twenty (10 males and 10 females) elite (athletes who compete at national level) and top-elite (athletes who compete at national and international level) taekwondo athletes with an average training background of 8.9 ± 1.3 years of systematic taekwondo training participated in this study. During the two-week test-retest period, various generic performance tests measuring COD speed, balance, speed, and jump performance were carried out during the first week and as a retest during the second week. Three TST trials were conducted with each athlete and the best trial was used for further analyses. The relevant performance measure derived from the TST was the time with striking penalty (TST-TSP). TST-TSP performances amounted to 10.57 ± 1.08 s for males and 11.74 ± 1.34 s for females. The reliability analysis of the TST performance was conducted after logarithmic transformation, in order to address the problem of heteroscedasticity. In both groups, the TST demonstrated a high relative test-retest reliability (intraclass correlation coefficients and 90% compatibility limits were 0.80 and 0.47 to 0.93, respectively). For absolute reliability, the TST’s typical error of measurement (TEM), 90% compatibility limits, and magnitudes were 4.6%, 3.4 to 7.7, for males, and 5.4%, 3.9 to 9.0, for females. The homogeneous sample of taekwondo athletes meant that the TST’s TEM exceeded the usual smallest important change (SIC) with 0.2 effect size in the two groups. The new test showed mostly very large correlations with linear sprint speed (r = 0.71 to 0.85) and dynamic balance (r = −0.71 and −0.74), large correlations with COD speed (r = 0.57 to 0.60) and vertical jump performance (r = −0.50 to −0.65), and moderate correlations with horizontal jump performance (r = −0.34 to −0.45) and static balance (r = −0.39 to −0.44). Top-elite athletes showed better TST performances than elite counterparts. Receiver operating characteristic analysis indicated that the TST effectively discriminated between top-elite and elite taekwondo athletes. In conclusion, the TST is a valid, and sensitive test to evaluate the COD speed with taekwondo specific skills, and reliable when considering ICC and TEM. Although the usefulness of the TST is questioned to detect small performance changes in the present population, the TST can detect moderate changes in taekwondo-specific COD speed. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 789 KW - taekwondo-specific testing KW - sport-specific performance KW - striking combat sports KW - sensitivity KW - taekwondo electronic scoring system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563192 SN - 1866-8364 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Aloui, Ali A1 - Tayech, Amel A1 - Arbi Mejri, Mohamed A1 - Makhlouf, Issam A1 - Clark, Cain C. T. A1 - Granacher, Urs A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf T1 - Reliability and Validity of a New Taekwondo-Specific Change-of-Direction Speed Test With Striking Techniques in Elite Taekwondo Athletes: A Pilot Study JF - Frontiers in Physiology N2 - The purpose of this study was to examine the test-retest reliability, and convergent and discriminative validity of a new taekwondo-specific change-of-direction (COD) speed test with striking techniques (TST) in elite taekwondo athletes. Twenty (10 males and 10 females) elite (athletes who compete at national level) and top-elite (athletes who compete at national and international level) taekwondo athletes with an average training background of 8.9 ± 1.3 years of systematic taekwondo training participated in this study. During the two-week test-retest period, various generic performance tests measuring COD speed, balance, speed, and jump performance were carried out during the first week and as a retest during the second week. Three TST trials were conducted with each athlete and the best trial was used for further analyses. The relevant performance measure derived from the TST was the time with striking penalty (TST-TSP). TST-TSP performances amounted to 10.57 ± 1.08 s for males and 11.74 ± 1.34 s for females. The reliability analysis of the TST performance was conducted after logarithmic transformation, in order to address the problem of heteroscedasticity. In both groups, the TST demonstrated a high relative test-retest reliability (intraclass correlation coefficients and 90% compatibility limits were 0.80 and 0.47 to 0.93, respectively). For absolute reliability, the TST’s typical error of measurement (TEM), 90% compatibility limits, and magnitudes were 4.6%, 3.4 to 7.7, for males, and 5.4%, 3.9 to 9.0, for females. The homogeneous sample of taekwondo athletes meant that the TST’s TEM exceeded the usual smallest important change (SIC) with 0.2 effect size in the two groups. The new test showed mostly very large correlations with linear sprint speed (r = 0.71 to 0.85) and dynamic balance (r = −0.71 and −0.74), large correlations with COD speed (r = 0.57 to 0.60) and vertical jump performance (r = −0.50 to −0.65), and moderate correlations with horizontal jump performance (r = −0.34 to −0.45) and static balance (r = −0.39 to −0.44). Top-elite athletes showed better TST performances than elite counterparts. Receiver operating characteristic analysis indicated that the TST effectively discriminated between top-elite and elite taekwondo athletes. In conclusion, the TST is a valid, and sensitive test to evaluate the COD speed with taekwondo specific skills, and reliable when considering ICC and TEM. Although the usefulness of the TST is questioned to detect small performance changes in the present population, the TST can detect moderate changes in taekwondo-specific COD speed. KW - taekwondo-specific testing KW - sport-specific performance KW - striking combat sports KW - sensitivity KW - taekwondo electronic scoring system Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.774546 SN - 1664-042X VL - 13 SP - 1 EP - 15 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study JF - Frontiers in Physiology N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00995 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 644 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472961 SN - 1866-8364 IS - 644 ER - TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 666 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482330 SN - 1866-8364 IS - 666 ER - TY - JOUR A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00608 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Azadian, Elaheh A1 - Majlesi, Mahdi A1 - Jafarnezhadgero, Amir Ali A1 - Granacher, Urs T1 - The impact of hearing loss on three-dimensional lower limb joint torques during walking in prepubertal boys JF - Journal of bodywork and movement therapies N2 - Introduction: In children, the impact of hearing loss on biomechanical gait parameters is not well understood. Thus, the objectives of this study were to examine three-dimensional lower limb joint torques in deaf compared to age-matched healthy (hearing) children while walking at preferred gait speed. Methods: Thirty prepubertal boys aged 8-14 were enrolled in this study and divided into a group with hearing loss (deaf group) and an age-matched healthy control. Three-dimensional joint torques were analyzed during barefoot walking at preferred speed using Kistler force plates and a Vicon motion capture system. Results: Findings revealed that boys with hearing loss showed lower joint torques in ankle evertors, knee flexors, abductors and internal rotators as well as in hip internal rotators in both, the dominant and non-dominant lower limbs (all p < 0.05; d = 1.23-7.00; 14-79%). Further, in the dominant limb, larger peak ankle dorsiflexor (p < 0.001; d = 1.83; 129%), knee adductor (p < 0.001; d = 3.20; 800%), and hip adductor torques (p < 0.001; d = 2.62; 350%) were found in deaf participants compared with controls. Conclusion: The observed altered lower limb torques during walking are indicative of unstable gait in children with hearing loss. More research is needed to elucidate whether physical training (e.g., balance and/or gait training) has the potential to improve walking performance in this patient group. (C) 2019 Elsevier Ltd. All rights reserved. KW - torque KW - hearing loss KW - gait KW - dominant limb KW - non-dominant limb Y1 - 2020 U6 - https://doi.org/10.1016/j.jbmt.2019.10.013 SN - 1360-8592 SN - 1532-9283 VL - 24 IS - 2 SP - 123 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Behm, David George A1 - Mühlbauer, Thomas A1 - Kibele, Armin A1 - Granacher, Urs T1 - Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis (vol 45, pg 1645, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0497-x SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 451 EP - 451 PB - Springer CY - Northcote ER - TY - JOUR A1 - Behm, David George A1 - Young, James D. A1 - Whitten, Joseph H. D. A1 - Reid, Jonathan C. A1 - Quigley, Patrick J. A1 - Low, Jonathan A1 - Li, Yimeng A1 - Lima, Camila D. A1 - Hodgson, Daniel D. A1 - Chaouachi, Anis A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis JF - Frontiers in physiology N2 - Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities. KW - children KW - boys KW - girls KW - plyometric training KW - resistance training Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00423 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gäbler, Martijn A1 - Devita, Paul A1 - Hortobagyi, Tibor T1 - Power Training-induced Increases in Muscle Activation during Gait in Old Adults JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - Introduction/Purpose: Aging modifies neuromuscular activation of agonist and antagonist muscles during walking. Power training can evoke adaptations in neuromuscular activation that underlie gains in muscle strength and power but it is unknown if these adaptations transfer to dynamic tasks such as walking. We examined the effects of lower-extremity power training on neuromuscular activation during level gait in old adults. Methods: Twelve community-dwelling old adults (age >= 65 yr) completed a 10-wk lower-extremity power training program and 13 old adults completed a 10-wk control period. Before and after the interventions, we measured maximal isometric muscle strength and electromyographic (EMG) activation of the right knee flexor, knee extensor, and plantarflexor muscles on a dynamometer and we measured EMG amplitudes, activation onsets and offsets, and activation duration of the knee flexors, knee extensors, and plantarflexors during gait at habitual, fast, and standardized (1.25 +/- 0.6 m.s(-1)) speeds. Results: Power training-induced increases in EMG amplitude (similar to 41%; 0.47 <= d <= 1.47; P <= 0.05) explained 33% (P = 0.049) of increases in isometric muscle strength (similar to 43%; 0.34 <= d <= 0.80; P <= 0.05). Power training-induced gains in plantarflexor activation during push-off (+11%; d = 0.38; P = 0.045) explained 57% (P = 0.004) of the gains in fast gait velocity (+4%; d = 0.31; P = 0.059). Furthermore, power training increased knee extensor activation (similar to 18%; 0.26 <= d <= 0.29; P <= 0.05) and knee extensor coactivation during the main knee flexor burst (similar to 24%, 0.26 <= d <= 0.44; P <= 0.05) at habitual and fast speed but these adaptations did not correlate with changes in gait velocity. Conclusions: Power training increased neuromuscular activation during isometric contractions and level gait in old adults. The power training-induced neuromuscular adaptations were associated with increases in isometric muscle strength and partly with increases in fast gait velocity. KW - WALKING KW - MUSCLE KW - EXERCISE KW - EMG Y1 - 2017 U6 - https://doi.org/10.1249/MSS.0000000000001345 SN - 0195-9131 SN - 1530-0315 VL - 49 SP - 2198 EP - 2205 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Vandervoort, A. A. A1 - DeVita, P. A1 - Hortobagyi, Tibor T1 - The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown JF - Ageing research reviews : ARR N2 - Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22% and 12% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19% and 9% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35% and 13% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions. KW - Aging KW - Strength training KW - Power training KW - Gait biomechanics Y1 - 2013 U6 - https://doi.org/10.1016/j.arr.2013.03.001 SN - 1568-1637 VL - 12 IS - 2 SP - 618 EP - 627 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Hortobagyi, Tibor A1 - Beurskens, Rainer A1 - Lenzen-Grossimlinghaus, Romana A1 - Gabler, Martijn A1 - Granacher, Urs T1 - Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS) JF - Gerontology N2 - Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel KW - Aging KW - Walking speed KW - Exercise KW - Muscle power KW - Gait kinematics KW - Gait kinetics Y1 - 2016 U6 - https://doi.org/10.1159/000444752 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 597 EP - 603 PB - Karger CY - Basel ER - TY - JOUR A1 - Ben Othman, Aymen A1 - Chaouachi, Anis A1 - Chaouachi, Mehdi A1 - Makhlouf, Issam A1 - Farthing, Jonathan P. A1 - Granacher, Urs A1 - Behm, David George T1 - Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children JF - Applied Physiology, Nutrition, and Metabolism N2 - Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg. KW - resistance training KW - cross-education KW - youth KW - strength KW - power KW - balance Y1 - 2019 U6 - https://doi.org/10.1139/apnm-2018-0766 SN - 1715-5312 SN - 1715-5320 VL - 44 IS - 9 SP - 973 EP - 984 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? JF - PLoS one N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0147392 SN - 1932-6203 VL - 11 IS - 1 SP - 1 EP - 15 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations: Does Whole-Body Fatigue Matter? JF - PLoS one N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single-(ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 +/- 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2-21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9-2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3-4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9-3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0147392 SN - 1932-6203 VL - 11 SP - 1379 EP - 1384 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 303 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96638 SP - 1 EP - 15 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Grabow, Lena A1 - Kliegl, Reinhold A1 - Granacher, Urs T1 - Effects of Backpack Carriage on Dual-Task Performance in Children During Standing and Walking JF - Journal of motor behavior KW - attentional demand KW - cognitive performance KW - gait analysis KW - load carriage KW - postural control Y1 - 2016 U6 - https://doi.org/10.1080/00222895.2016.1152137 SN - 0022-2895 SN - 1940-1027 VL - 48 SP - 500 EP - 508 PB - Wiley-VCH CY - Abingdon ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 270 KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75100 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children JF - BMC pediatrics N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - https://doi.org/10.1186/s12887-015-0317-8 SN - 1471-2431 VL - 15 IS - 2 PB - BioMed Central CY - London ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 268 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73448 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults JF - PLoS one N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single-and dual-task walking. We had 12 young adults (23.8 +/- 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - London ER - TY - GEN A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 291 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90742 SP - 1 EP - 9 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 VL - 2016 SP - 1 EP - 9 PB - Hindawi CY - New York ER - TY - GEN A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 563 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435972 SN - 1866-8364 IS - 563 ER - TY - JOUR A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults JF - Neural Plasticity N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. Y1 - 2019 U6 - https://doi.org/10.1155/2019/9478656 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - New York ER - TY - JOUR A1 - Bouamra, Marwa A1 - Zouhal, Hassane A1 - Ratel, Sébastien A1 - Makhlouf, Issam A1 - Bezrati, Ikram A1 - Chtara, Moktar A1 - Behm, David George A1 - Granacher, Urs A1 - Chaouachi, Anis T1 - Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity JF - Frontiers in Physiology N2 - The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50% resistance (RT) and 50% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80–110% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3–4 sets × 10 repetition maximum (RM) and CT (n = 13): 50% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth. KW - weight loss KW - adolescents KW - high-intensity-interval training KW - resistance training KW - DXA KW - matched time Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.869063 SN - 1664-042X VL - 13 SP - 1 EP - 16 PB - Frontiers CY - Lausanne, Schweiz ER - TY - GEN A1 - Bouamra, Marwa A1 - Zouhal, Hassane A1 - Ratel, Sébastien A1 - Makhlouf, Issam A1 - Bezrati, Ikram A1 - Chtara, Moktar A1 - Behm, David George A1 - Granacher, Urs A1 - Chaouachi, Anis T1 - Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50% resistance (RT) and 50% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80–110% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3–4 sets × 10 repetition maximum (RM) and CT (n = 13): 50% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 791 KW - weight loss KW - adolescents KW - high-intensity-interval training KW - resistance training KW - DXA KW - matched time Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563974 SN - 1866-8364 SP - 1 EP - 16 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis JF - Acta Psychologica N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - https://doi.org/10.1016/j.actpsy.2022.103540 SN - 1873-6297 VL - 225 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 779 KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561560 SN - 1866-8364 SP - 1 EP - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Brini, Seifeddine A1 - Abderrahman, Abderraouf Ben A1 - Clark, Cain C. T. A1 - Zouita, Sghaeir A1 - Hackney, Anthony C. A1 - Govindasamy, Karuppasamy A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sex-specific effects of small-sided games in basketball on psychometric and physiological markers during Ramadan intermittent fasting BT - a pilot study JF - BMC Sports Science, Medicine and Rehabilitation N2 - Background: We assessed the effects of gender, in association with a four-week small-sided games (SSGs) training program, during Ramadan intermitting fasting (RIF) on changes in psychometric and physiological markers in professional male and female basketball players. Methods: Twenty-four professional basketball players from the first Tunisian (Tunisia) division participated in this study. The players were dichotomized by sex (males [GM = 12]; females [GF = 12]). Both groups completed a 4 weeks SSGs training program with 3 sessions per week. Psychometric (e.g., quality of sleep, fatigue, stress, and delayed onset of muscle soreness [DOMS]) and physiological parameters (e.g., heart rate frequency, blood lactate) were measured during the first week (baseline) and at the end of RIF (post-test). Results: Post hoc tests showed a significant increase in stress levels in both groups (GM [− 81.11%; p < 0.001, d = 0.33, small]; GF [− 36,53%; p = 0.001, d = 0.25, small]). Concerning physiological parameters, ANCOVA revealed significantly lower heart rates in favor of GM at post-test (1.70%, d = 0.38, small, p = 0.002). Conclusions: Our results showed that SSGs training at the end of the RIF negatively impacted psychometric parameters of male and female basketball players. It can be concluded that there are sex-mediated effects of training during RIF in basketball players, and this should be considered by researchers and practitioners when programing training during RIF. KW - Team sports KW - Stress levels KW - Recovery KW - Performance KW - Fatigue Y1 - 2021 U6 - https://doi.org/10.1186/s13102-021-00285-1 SN - 2052-1847 VL - 13 PB - BioMed Central CY - London ER - TY - GEN A1 - Brini, Seifeddine A1 - Abderrahman, Abderraouf Ben A1 - Clark, Cain C. T. A1 - Zouita, Sghaeir A1 - Hackney, Anthony C. A1 - Govindasamy, Karuppasamy A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sex-specific effects of small-sided games in basketball on psychometric and physiological markers during Ramadan intermittent fasting BT - a pilot study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: We assessed the effects of gender, in association with a four-week small-sided games (SSGs) training program, during Ramadan intermitting fasting (RIF) on changes in psychometric and physiological markers in professional male and female basketball players. Methods: Twenty-four professional basketball players from the first Tunisian (Tunisia) division participated in this study. The players were dichotomized by sex (males [GM = 12]; females [GF = 12]). Both groups completed a 4 weeks SSGs training program with 3 sessions per week. Psychometric (e.g., quality of sleep, fatigue, stress, and delayed onset of muscle soreness [DOMS]) and physiological parameters (e.g., heart rate frequency, blood lactate) were measured during the first week (baseline) and at the end of RIF (post-test). Results: Post hoc tests showed a significant increase in stress levels in both groups (GM [− 81.11%; p < 0.001, d = 0.33, small]; GF [− 36,53%; p = 0.001, d = 0.25, small]). Concerning physiological parameters, ANCOVA revealed significantly lower heart rates in favor of GM at post-test (1.70%, d = 0.38, small, p = 0.002). Conclusions: Our results showed that SSGs training at the end of the RIF negatively impacted psychometric parameters of male and female basketball players. It can be concluded that there are sex-mediated effects of training during RIF in basketball players, and this should be considered by researchers and practitioners when programing training during RIF. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 735 KW - Team sports KW - Stress levels KW - Recovery KW - Performance KW - Fatigue Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-531578 SN - 1866-8364 ER - TY - JOUR A1 - Chaabene, Helmi A1 - Behm, David George A1 - Negra, Yassine A1 - Granacher, Urs T1 - Acute Effects of Static Stretching on Muscle Strength and Power BT - An Attempt to Clarify Previous Caveats JF - Frontiers in Physiology N2 - The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers’ knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1–2%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0–7.5%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition. KW - passive stretching KW - physical fitness KW - physiology KW - range of motion KW - injury Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01468 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Chaabene, Helmi A1 - Behm, David George A1 - Negra, Yassine A1 - Granacher, Urs T1 - Acute Effects of Static Stretching on Muscle Strength and Power BT - An Attempt to Clarify Previous Caveats T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers’ knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1–2%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0–7.5%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 585 KW - passive stretching KW - physical fitness KW - physiology KW - range of motion KW - injury Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440036 SN - 1866-8364 IS - 585 ER - TY - GEN A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - There is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth. N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 730 KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526912 SN - 1866-8364 IS - 3 ER - TY - JOUR A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden JF - Sports Orthopaedics and Traumatology N2 - Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 VL - 36 IS - 3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Bouguezzi, Raja A1 - Capranica, Laura A1 - Franchini, Emerson A1 - Prieske, Olaf A1 - Hbacha, Hamdi A1 - Granacher, Urs T1 - Tests for the Assessment of Sport-Specific Performance in Olympic Combat Sports BT - A Systematic Review With Practical Recommendations JF - Frontiers in Physiology N2 - The regular monitoring of physical fitness and sport-specific performance is important in elite sports to increase the likelihood of success in competition. This study aimed to systematically review and to critically appraise the methodological quality, validation data, and feasibility of the sport-specific performance assessment in Olympic combat sports like amateur boxing, fencing, judo, karate, taekwondo, and wrestling. A systematic search was conducted in the electronic databases PubMed, Google-Scholar, and Science-Direct up to October 2017. Studies in combat sports were included that reported validation data (e.g., reliability, validity, sensitivity) of sport-specific tests. Overall, 39 studies were eligible for inclusion in this review. The majority of studies (74%) contained sample sizes <30 subjects. Nearly, 1/3 of the reviewed studies lacked a sufficient description (e.g., anthropometrics, age, expertise level) of the included participants. Seventy-two percent of studies did not sufficiently report inclusion/exclusion criteria of their participants. In 62% of the included studies, the description and/or inclusion of a familiarization session (s) was either incomplete or not existent. Sixty-percent of studies did not report any details about the stability of testing conditions. Approximately half of the studies examined reliability measures of the included sport-specific tests (intraclass correlation coefficient [ICC] = 0.43–1.00). Content validity was addressed in all included studies, criterion validity (only the concurrent aspect of it) in approximately half of the studies with correlation coefficients ranging from r = −0.41 to 0.90. Construct validity was reported in 31% of the included studies and predictive validity in only one. Test sensitivity was addressed in 13% of the included studies. The majority of studies (64%) ignored and/or provided incomplete information on test feasibility and methodological limitations of the sport-specific test. In 28% of the included studies, insufficient information or a complete lack of information was provided in the respective field of the test application. Several methodological gaps exist in studies that used sport-specific performance tests in Olympic combat sports. Additional research should adopt more rigorous validation procedures in the application and description of sport-specific performance tests in Olympic combat sports. KW - martial arts KW - validity KW - sensitivity KW - methodological quality KW - specific assessment Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00386 SN - 1664-042X VL - 9 SP - 1 EP - 18 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Bouguezzi, Raja A1 - Capranica, Laura A1 - Franchini, Emerson A1 - Prieske, Olaf A1 - Hbacha, Hamdi A1 - Granacher, Urs T1 - Tests for the Assessment of Sport-Specific Performance in Olympic Combat Sports BT - A Systematic Review With Practical Recommendations T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The regular monitoring of physical fitness and sport-specific performance is important in elite sports to increase the likelihood of success in competition. This study aimed to systematically review and to critically appraise the methodological quality, validation data, and feasibility of the sport-specific performance assessment in Olympic combat sports like amateur boxing, fencing, judo, karate, taekwondo, and wrestling. A systematic search was conducted in the electronic databases PubMed, Google-Scholar, and Science-Direct up to October 2017. Studies in combat sports were included that reported validation data (e.g., reliability, validity, sensitivity) of sport-specific tests. Overall, 39 studies were eligible for inclusion in this review. The majority of studies (74%) contained sample sizes <30 subjects. Nearly, 1/3 of the reviewed studies lacked a sufficient description (e.g., anthropometrics, age, expertise level) of the included participants. Seventy-two percent of studies did not sufficiently report inclusion/exclusion criteria of their participants. In 62% of the included studies, the description and/or inclusion of a familiarization session (s) was either incomplete or not existent. Sixty-percent of studies did not report any details about the stability of testing conditions. Approximately half of the studies examined reliability measures of the included sport-specific tests (intraclass correlation coefficient [ICC] = 0.43–1.00). Content validity was addressed in all included studies, criterion validity (only the concurrent aspect of it) in approximately half of the studies with correlation coefficients ranging from r = −0.41 to 0.90. Construct validity was reported in 31% of the included studies and predictive validity in only one. Test sensitivity was addressed in 13% of the included studies. The majority of studies (64%) ignored and/or provided incomplete information on test feasibility and methodological limitations of the sport-specific test. In 28% of the included studies, insufficient information or a complete lack of information was provided in the respective field of the test application. Several methodological gaps exist in studies that used sport-specific performance tests in Olympic combat sports. Additional research should adopt more rigorous validation procedures in the application and description of sport-specific performance tests in Olympic combat sports. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 436 KW - martial arts KW - validity KW - sensitivity KW - methodological quality KW - specific assessment Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411959 IS - 436 ER - TY - JOUR A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Capranica, Laura A1 - Prieske, Olaf A1 - Granacher, Urs T1 - A Needs Analysis of Karate Kumite With Recommendations for Performance Testing and Training JF - Strength and conditioning journal N2 - An effective training program needs to be customized to the specific demands of the redpective sport. Therefore, it is important to conduct a needs analysis to gain information on the unique characteristics of the sport. The objectives of thes review were (A) to conduct a systematic needs analysis of karate kumite and (B) to provide practical recommendations for sport-specific performance testing and training of karate kumite athletes. KW - sport profile KW - striking combat sports KW - strength KW - power KW - energetic systems KW - injury KW - assessment Y1 - 2019 U6 - https://doi.org/10.1519/SSC.0000000000000445 SN - 1524-1602 SN - 1533-4295 VL - 41 IS - 3 SP - 35 EP - 46 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Moran, Jason A1 - Prieske, Olaf A1 - Sammoud, Senda A1 - Ramirez-Campillo, Rodrigo A1 - Granacher, Urs T1 - Plyometric training improves not only measures of linear speed, power, and change-of-direction speed but also repeated sprint ability in young female handball players JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - This study examined the effects of an 8-week plyometric training (PT) program on components of physical fitness in young female handball players. Twenty-one female adolescent handball players were assigned to an experimental group (EG, n = 12; age = 15.9 +/- 0.2 years) or an active control group (CG, n = 9, age = 15.9 +/- 0.3 years). While EG performed plyometric exercises in replacement of some handball-specific drills, CG maintained the regular training schedule. Baseline and follow-up tests were performed for the assessment of linear speed (i.e., 5-, 10-, and 20-m time), change-of-direction (CoD) speed (i.e., T-test time), muscle power (i.e., countermovement jump [CMJ] height and reactive strength index [RSI]), and repeated sprint ability (RSA) (RSA total time [RSA(total)], RSA best time [RSA(best)], and RSA fatigue index [RSA(FI)]). Data were analyzed using magnitude-based inferences. Within-group analyses for the EG revealed moderate-to-large improvements for the 5-m (effect size [ES] = 0.81 [0.1-1.5]), 10-m sprint time (ES = 0.84 [0.1-1.5]), RSI (ES = 0.75 [0.1-1.4]), RSA(FI) (ES = 0.65 [0.0-1.3]), and T-test time (ES = 1.46 [0.7-2.2]). Trivial-to-small ES was observed for RSA(best) (ES = 0.18 [-0.5 to 0.9]), RSA(total) (ES = 0.45 [-0.2 to 1.1]), 20-m sprint time (ES = 0.56 [-0.1 to 1.2]), and CMJ height (ES = 0.57 [-0.1 to 1.3]). For the CG, within-group analyses showed a moderate performance decline for T-test time (ES = -0.71 [-1.5 to 0.1]), small decreases for 5-m sprint time (ES = -0.46 [-1.2 to 0.3]), and a trivial decline for 10-m (ES = -0.10 [-0.9 to 0.7]) and 20-m sprint times (ES = -0.16 [-0.9 to 0.6]), RSA(total) (ES = 0.0 [-0.8 to 0.8]), and RSA(best) (ES = -0.20 [-0.9 to 0.6]). The control group achieved trivial-to-small improvements for CMJ height (ES = 0.10 [-0.68 to 0.87]) and RSI (ES = 0.30 [-0.5 to 1.1]). In conclusion, a short-term in-season PT program, in replacement of handball-specific drills, is effective in improving measures of physical fitness (i.e., linear/CoD speed, jumping, and RSA) in young female handball players. KW - stretch-shortening cycle KW - physical fitness KW - young athletes Y1 - 2021 U6 - https://doi.org/10.1519/JSC.0000000000003128 SN - 1064-8011 SN - 1533-4287 VL - 35 IS - 8 SP - 2230 EP - 2235 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters JF - Sports KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2019 U6 - https://doi.org/10.3390/sports7120242 SN - 2075-4663 VL - 7 IS - 12 PB - MDPI CY - Basel ER - TY - GEN A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-term seasonal development of anthropometry, body composition, physical fitness, and sport-specific performance in young olympic weightlifters T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The aim of this study is to monitor short-term seasonal development of young Olympic weightlifters’ anthropometry, body composition, physical fitness, and sport-specific performance. Fifteen male weightlifters aged 13.2 ± 1.3 years participated in this study. Tests for the assessment of anthropometry (e.g., body-height, body-mass), body-composition (e.g., lean-body-mass, relative fat-mass), muscle strength (grip-strength), jump performance (drop-jump (DJ) height, countermovement-jump (CMJ) height, DJ contact time, DJ reactive-strength-index (RSI)), dynamic balance (Y-balance-test), and sport-specific performance (i.e., snatch and clean-and-jerk) were conducted at different time-points (i.e., T1 (baseline), T2 (9 weeks), T3 (20 weeks)). Strength tests (i.e., grip strength, clean-and-jerk and snatch) and training volume were normalized to body mass. Results showed small-to-large increases in body-height, body-mass, lean-body-mass, and lower-limbs lean-mass from T1-to-T2 and T2-to-T3 (∆0.7–6.7%; 0.1 ≤ d ≤ 1.2). For fat-mass, a significant small-sized decrease was found from T1-to-T2 (∆13.1%; d = 0.4) and a significant increase from T2-to-T3 (∆9.1%; d = 0.3). A significant main effect of time was observed for DJ contact time (d = 1.3) with a trend toward a significant decrease from T1-to-T2 (∆–15.3%; d = 0.66; p = 0.06). For RSI, significant small increases from T1-to-T2 (∆9.9%, d = 0.5) were noted. Additionally, a significant main effect of time was found for snatch (d = 2.7) and clean-and-jerk (d = 3.1) with significant small-to-moderate increases for both tests from T1-to-T2 and T2-to-T3 (∆4.6–11.3%, d = 0.33 to 0.64). The other tests did not change significantly over time (0.1 ≤ d ≤ 0.8). Results showed significantly higher training volume for sport-specific training during the second period compared with the first period (d = 2.2). Five months of Olympic weightlifting contributed to significant changes in anthropometry, body-composition, and sport-specific performance. However, hardly any significant gains were observed for measures of physical fitness. Coaches are advised to design training programs that target a variety of fitness components to lay an appropriate foundation for later performance as an elite athlete. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 685 KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472609 SN - 1866-8364 IS - 685 ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Moran, Jason A1 - Negra, Yassine A1 - Attia, Ahmed A1 - Granacher, Urs T1 - Effects of resistance training on Change-of-Direction speed in youth and young physically active and athletic adults: a systematic review with meta-analysis JF - Sports medicine : the world's premier sports medicine preview journal N2 - Background Change-of-direction (CoD) speed is a physical fitness attribute in many field-based team and individual sports. To date, no systematic review with meta-analysis available has examined the effects of resistance training (RT) on CoD speed in youth and adults. Objective To aggregate the effects of RT on CoD speed in youth and young physically active and athletic adults, and to identify the key RT programme variables for training prescription. Data sources A systematic literature search was conducted with PubMed, Web of Science, and Google Scholar, with no date restrictions, up to October 2019, to identify studies related to the effects of RT on CoD speed. Study Eligibility Criteria Only controlled studies with baseline and follow-up measures were included if they examined the effects of RT (i.e., muscle actions against external resistances) on CoD speed in healthy youth (8-18 years) and young physically active/athletic male or female adults (19-28 years). Study Appraisal and Synthesis Methods A random-effects model was used to calculate weighted standardised mean differences (SMD) between intervention and control groups. In addition, an independent single training factor analysis (i.e., RT frequency, intensity, volume) was undertaken. Further, to verify if any RT variable moderated effects on CoD speed, a multivariate random-effects meta-regression was conducted. The methodological quality of the included studies was assessed using the physiotherapy evidence database (PEDro) scale. Results Fifteen studies, comprising 19 experimental groups, were included. The methodological quality of the studies was acceptable with a median PEDro score of 6. There was a significant large effect size of RT on CoD speed across all studies (SMD = - 0.82 [- 1.14 to - 0.49]). Subgroup analyses showed large effect sizes on CoD speed in males (SMD = - 0.95) contrasting with moderate improvements in females (SMD = - 0.60). There were large effect sizes on CoD speed in children (SMD = - 1.28) and adolescents (SMD = - 1.21) contrasting with moderate effects in adults (SMD = - 0.63). There was a moderate effect in elite athletes (SMD = - 0.69) contrasting with a large effect in subelite athletes (SMD = - 0.86). Differences between subgroups were not statistically significant. Similar improvements were observed regarding the effects of independently computed training variables. In terms of RT frequency, our results indicated that two sessions per week induced large effects on CoD speed (SMD = - 1.07) while programmes with three sessions resulted in moderate effects (SMD = - 0.53). For total training intervention duration, we observed large effects for <= 8 weeks (SMD = - 0.81) and > 8 weeks (SMD = - 0.85). For single session duration, we found large effects for <= 30 min and >= 45 min (both SMD = - 1.00). In terms of number of training sessions, we identified large effects for <= 16 sessions (SMD = - 0.83) and > 16 sessions (SMD = - 0.81). For training intensity, we found moderate effects for light-to-moderate (SMD = - 0.76) and vigorous-to-near maximal intensities (SMD = - 0.77). With regards to RT type, we observed large effects for free weights (SMD = - 0.99) and machine-based training (SMD = - 0.80). For combined free weights and machine-based training, moderate effects were identified (SMD = - 0.77). The meta-regression outcomes showed that none of the included training variables significantly predicted the effects of RT on CoD speed (R-2 = 0.00). Conclusions RT seems to be an effective means to improve CoD speed in youth and young physically active and athletic adults. Our findings indicate that the impact of RT on CoD speed may be more prominent in males than in females and in youth than in adults. Additionally, independently computed single factor analyses for different training variables showed that higher compared with lower RT intensities, frequencies, and volumes appear not to have an advantage on the magnitude of CoD speed improvements. In terms of RT type, similar improvements were observed following machine-based and free weights training. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01293-w SN - 0112-1642 SN - 1179-2035 VL - 50 IS - 8 SP - 1483 EP - 1499 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Negra, Yassine A1 - Granacher, Urs T1 - Change of direction speed BT - toward a strength training approach with accentuated eccentric muscle actions JF - Sports medicine N2 - There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0907-3 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 8 SP - 1773 EP - 1779 PB - Springer CY - Northcote ER - TY - JOUR A1 - Chaouachi, Anis A1 - Ben Othman, Aymen A1 - Makhlouf, Issam A1 - Young, James D. A1 - Granacher, Urs A1 - Behm, David George T1 - Global Training Effects of Trained and Untrained Muscles With Youth Can be Maintained During 4 Weeks of Detraining JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Global (whole-body) effects of resistance training (i.e., cross-education) may be pervasive with children. Detraining induces less substantial deficits with children than adults. It was the objective of this study to investigate the global responses to 4 weeks of detraining after 8 weeks of unilateral leg press (LP) training in 10-13-year-old, pre-peak-height-velocity stage boys. Subjects were randomly separated into 2 unilateral resistance training groups (high load/low repetitions [HL-LR] and low load/high repetitions [LL-HR], and control group). Assessments at pre-training, post-training, and detraining included dominant and nondominant limbs, unilateral, 1 repetition maximum (1RM) and 60% 1RM LP, knee extension, knee flexion, elbow flexion, and handgrip maximal voluntary isometric contraction (MVIC), and countermovement jump (CMJ). All measures significantly increased from pre-test to detraining for both training programs, except for elbow flexion MVIC with increases only with HL-LR. All measures except CMJ and handgrip MVIC significantly decreased from post-test to detraining, except for elbow flexion MVIC with decreases only with HL-LR. The dominant trained limb experienced significantly greater LP improvements (pre- to detraining) and decrements (post- to detraining) with LP 1RM and 60% 1RM LP. In conclusion, youth HL-LR and LL-HR global training effects of trained and untrained limbs demonstrate similar benefits (pre- to detraining) and decrements (post- to detraining) with detraining. The findings emphasize that training any muscle group in a child can have positive global implications for improved strength and power that can persist over baseline measures for at least a month. KW - adolescents KW - strength training KW - deconditioning KW - cross-education KW - children Y1 - 2019 U6 - https://doi.org/10.1519/JSC.0000000000002606 SN - 1064-8011 SN - 1533-4287 VL - 33 IS - 10 SP - 2788 EP - 2800 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Chaouachi, Mehdi A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Hammami, Raouf A1 - Behm, David G. A1 - Chaouachi, Anis T1 - Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes JF - Journal of sports science & medicine N2 - The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players ( 13.9 +/- 0.3 years) participated in an 8-week training program that either alternated individual balance (e. g., exercises on unstable surfaces) and plyometric (e. g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately > 30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. KW - Power KW - strength KW - jumps KW - sprints KW - balance KW - children Y1 - 2017 SN - 1303-2968 VL - 16 SP - 125 EP - 136 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - GEN A1 - Coppalle, Sullivan A1 - Rave, Guillaume A1 - Abderrahman, Abderraouf Ben A1 - Ali, Ajmol A1 - Salhi, Iyed A1 - Zouita, Sghaier A1 - Zouita, Amira A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Relationship of Pre-season Training Load With In-Season Biochemical Markers, Injuries and Performance in Professional Soccer Players T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - There is controversy in the literature in regards of the link between training load and injury rate. Thus, the aims of this non-interventional study were to evaluate relationships between pre-season training load with biochemical markers, injury incidence and performance during the first month of the competitive period in professional soccer players. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 564 KW - football KW - global positioning system KW - blood sample KW - monitoring KW - elite athletes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436025 IS - 564 ER - TY - JOUR A1 - Coppalle, Sullivan A1 - Rave, Guillaume A1 - Abderrahman, Abderraouf Ben A1 - Ali, Ajmol A1 - Salhi, Iyed A1 - Zouita, Sghaier A1 - Zouita, Amira A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Relationship of Pre-season Training Load With In-Season Biochemical Markers, Injuries and Performance in Professional Soccer Players JF - Frontiers in Physiology N2 - There is controversy in the literature in regards of the link between training load and injury rate. Thus, the aims of this non-interventional study were to evaluate relationships between pre-season training load with biochemical markers, injury incidence and performance during the first month of the competitive period in professional soccer players. KW - elite athletes KW - global positioning system KW - monitoring KW - blood sample KW - football Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.00409 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Coppalle, Sullivan A1 - Ravé, Guillaume A1 - Moran, Jason A1 - Salhi, Iyed A1 - Ben Abderrahman, Abderraouf A1 - Zouita, Sghaeir A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Internal and External Training Load in Under-19 versus Professional Soccer Players during the In-Season Period JF - International Journal of Environmental Research and Public Health N2 - This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p = 0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p = 0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT. KW - monitoring KW - global positioning system KW - elite athletes KW - academy KW - RPE Y1 - 2020 U6 - https://doi.org/10.3390/ijerph18020558 SN - 1660-4601 VL - 18 IS - 2 PB - MDPI AG CY - Basel ER - TY - GEN A1 - Coppalle, Sullivan A1 - Ravé, Guillaume A1 - Moran, Jason A1 - Salhi, Iyed A1 - Ben Abderrahman, Abderraouf A1 - Zouita, Sghaeir A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Internal and External Training Load in Under-19 versus Professional Soccer Players during the In-Season Period T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p = 0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p = 0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 694 KW - monitoring KW - global positioning system KW - elite athletes KW - academy KW - RPE Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-489745 SN - 1866-8364 IS - 694 ER - TY - JOUR A1 - Delfan, Maryam A1 - Juybari, Raheleh Amadeh A1 - Gorgani-Firuzjaee, Sattar A1 - Nielsen, Jens Høiriis A1 - Delfan, Neda A1 - Laher, Ismail A1 - Saeidi, Ayoub A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - High-Intensity Interval Training Improves Cardiac Function by miR-206 Dependent HSP60 Induction in Diabetic Rats JF - Frontiers in Cardiovascular Medicine N2 - Objective: A role for microRNAs is implicated in several biological and pathological processes. We investigated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on molecular markers of diabetic cardiomyopathy in rats. Methods: Eighteen male Wistar rats (260 ± 10 g; aged 8 weeks) with streptozotocin (STZ)-induced type 1 diabetes mellitus (55 mg/kg, IP) were randomly allocated to three groups: control, MICT, and HIIT. The two different training protocols were performed 5 days each week for 5 weeks. Cardiac performance (end-systolic and end-diastolic dimensions, ejection fraction), the expression of miR-206, HSP60, and markers of apoptosis (cleaved PARP and cytochrome C) were determined at the end of the exercise interventions. Results: Both exercise interventions (HIIT and MICT) decreased blood glucose levels and improved cardiac performance, with greater changes in the HIIT group (p < 0.001, η2: 0.909). While the expressions of miR-206 and apoptotic markers decreased in both training protocols (p < 0.001, η2: 0.967), HIIT caused greater reductions in apoptotic markers and produced a 20% greater reduction in miR-206 compared with the MICT protocol (p < 0.001). Furthermore, both training protocols enhanced the expression of HSP60 (p < 0.001, η2: 0.976), with a nearly 50% greater increase in the HIIT group compared with MICT. Conclusions: Our results indicate that both exercise protocols, HIIT and MICT, have the potential to reduce diabetic cardiomyopathy by modifying the expression of miR-206 and its downstream targets of apoptosis. It seems however that HIIT is even more effective than MICT to modulate these molecular markers. KW - diabetes KW - apoptosis KW - miRNAs KW - exercise KW - cardiomyopathy Y1 - 2022 U6 - https://doi.org/10.3389/fcvm.2022.927956 SN - 2297-055X VL - 9 SP - 1 EP - 11 PB - Frontiers CY - Lausanne, Schweiz ER - TY - GEN A1 - Delfan, Maryam A1 - Juybari, Raheleh Amadeh A1 - Gorgani-Firuzjaee, Sattar A1 - Nielsen, Jens Høiriis A1 - Delfan, Neda A1 - Laher, Ismail A1 - Saeidi, Ayoub A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - High-Intensity Interval Training Improves Cardiac Function by miR-206 Dependent HSP60 Induction in Diabetic Rats T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Objective: A role for microRNAs is implicated in several biological and pathological processes. We investigated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on molecular markers of diabetic cardiomyopathy in rats. Methods: Eighteen male Wistar rats (260 ± 10 g; aged 8 weeks) with streptozotocin (STZ)-induced type 1 diabetes mellitus (55 mg/kg, IP) were randomly allocated to three groups: control, MICT, and HIIT. The two different training protocols were performed 5 days each week for 5 weeks. Cardiac performance (end-systolic and end-diastolic dimensions, ejection fraction), the expression of miR-206, HSP60, and markers of apoptosis (cleaved PARP and cytochrome C) were determined at the end of the exercise interventions. Results: Both exercise interventions (HIIT and MICT) decreased blood glucose levels and improved cardiac performance, with greater changes in the HIIT group (p < 0.001, η2: 0.909). While the expressions of miR-206 and apoptotic markers decreased in both training protocols (p < 0.001, η2: 0.967), HIIT caused greater reductions in apoptotic markers and produced a 20% greater reduction in miR-206 compared with the MICT protocol (p < 0.001). Furthermore, both training protocols enhanced the expression of HSP60 (p < 0.001, η2: 0.976), with a nearly 50% greater increase in the HIIT group compared with MICT. Conclusions: Our results indicate that both exercise protocols, HIIT and MICT, have the potential to reduce diabetic cardiomyopathy by modifying the expression of miR-206 and its downstream targets of apoptosis. It seems however that HIIT is even more effective than MICT to modulate these molecular markers. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 802 KW - diabetes KW - apoptosis KW - miRNAs KW - exercise KW - cardiomyopathy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-567238 SN - 1866-8364 IS - 802 ER - TY - JOUR A1 - Delfan, Maryam A1 - Vahed, Alieh A1 - Bishop, David A1 - Juybari, Raheleh Amadeh A1 - Laher, Ismail A1 - Saeidi, Ayoub A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Effects of two workload-matched high-intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats JF - Frontiers in Physiology N2 - Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4–5 × 2-min running at 80%–90% of the maximum speed reached with 2-min of recovery at 40% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5–6 × 2-min running at 80%–90% of the maximum speed reached with 1-min of recovery at 30% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats. KW - diabetes mellitus KW - muscle metabolism KW - time-efficient exercise KW - mitochondrial adaptation KW - exercise training Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.927969 SN - 1664-042X SP - 1 EP - 12 PB - Frontiers CY - Lausanne, Schweiz ER - TY - GEN A1 - Delfan, Maryam A1 - Vahed, Alieh A1 - Bishop, David A1 - Juybari, Raheleh Amadeh A1 - Laher, Ismail A1 - Saeidi, Ayoub A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Effects of two workload-matched high intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4–5 × 2-min running at 80%–90% of the maximum speed reached with 2-min of recovery at 40% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5–6 × 2-min running at 80%–90% of the maximum speed reached with 1-min of recovery at 30% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 794 KW - diabetes mellitus KW - muscle metabolism KW - time-efficient exercise KW - mitochondrial adaptation KW - exercise training Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564441 SN - 1866-8364 SP - 1 EP - 12 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Cardio-Respiratory Endurance Responses Following a Simulated 3 x 3 Minutes Amateur Boxing Contest in Elite Level Boxers JF - Sports N2 - This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining. KW - aerobic metabolism KW - physiological strain KW - striking combat sports KW - elite athletes Y1 - 2018 U6 - https://doi.org/10.3390/sports6040119 SN - 2075-4663 VL - 6 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Cardio-Respiratory endurance responses following a simulated 3 x 3 minutes amateur boxing contest in elite level boxers T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 675 KW - aerobic metabolism KW - physiological strain KW - striking combat sports KW - elite athletes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472338 SN - 1866-8364 IS - 675 ER - TY - GEN A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Abdelkafy, Ashraf A1 - Ahmed, Mohamed A. A1 - Muaidi, Qassim I. A1 - Granacher, Urs T1 - Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors BT - The Role of Training Status T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 562 KW - muscle activation KW - hamstring muscles KW - latency KW - injury risk KW - physical fitness expertise Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435863 SN - 1866-8364 IS - 562 ER - TY - JOUR A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Abdelkafy, Ashraf A1 - Ahmed, Mohamed A. A1 - Muaidi, Qassim I. A1 - Granacher, Urs T1 - Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors BT - The Role of Training Status JF - Frontiers in Physiology N2 - Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings. KW - muscle activation KW - hamstring muscles KW - latency KW - injury risk KW - physical fitness expertise Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.00782 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Fernandez-Fernandez, Jaime A1 - Granacher, Urs A1 - Martinez-Martin, Isidoro A1 - Garcia-Tormo, José Vicente A1 - Herrero-Molleda, Alba A1 - Barbado, David A1 - García López, Juan T1 - Physical fitness and throwing speed in U13 versus U15 male handball players T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background The aim of this study was to analyze the shoulder functional profile (rotation range of motion [ROM] and strength), upper and lower body performance, and throwing speed of U13 versus U15 male handball players, and to establish the relationship between these measures of physical fitness and throwing speed. Methods One-hundred and nineteen young male handball players (under (U)-13 (U13) [n = 85]) and U15 [n = 34]) volunteered to participate in this study. The participating athletes had a mean background of sytematic handball training of 5.5 ± 2.8 years and they exercised on average 540 ± 10.1 min per week including sport-specific team handball training and strength and conditioning programs. Players were tested for passive shoulder range-of-motion (ROM) for both internal (IR) and external rotation (ER) and isometric strength (i.e., IR and ER) of the dominant/non-dominant shoulders, overhead medicine ball throw (OMB), hip isometric abductor (ABD) and adductor (ADD) strength, hip ROM, jumps (countermovement jump [CMJ] and triple leg-hop [3H] for distance), linear sprint test, modified 505 change-of-direction (COD) test and handball throwing speed (7 m [HT7] and 9 m [HT9]). Results U15 players outperformed U13 in upper (i.e., HT7 and HT9 speed, OMB, absolute IR and ER strength of the dominant and non-dominant sides; Cohen’s d: 0.76–2.13) and lower body (i.e., CMJ, 3H, 20-m sprint and COD, hip ABD and ADD; d: 0.70–2.33) performance measures. Regarding shoulder ROM outcomes, a lower IR ROM was found of the dominant side in the U15 group compared to the U13 and a higher ER ROM on both sides in U15 (d: 0.76–1.04). It seems that primarily anthropometric characteristics (i.e., body height, body mass) and upper body strength/power (OMB distance) are the most important factors that explain the throw speed variance in male handball players, particularly in U13. Conclusions Findings from this study imply that regular performance monitoring is important for performance development and for minimizing injury risk of the shoulder in both age categories of young male handball players. Besides measures of physical fitness, anthropometric data should be recorded because handball throwing performance is related to these measures. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 803 KW - Overhead athletes KW - Shoulder KW - Injury risk KW - Sport-specific performance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-567307 SN - 1866-8364 IS - 803 ER - TY - JOUR A1 - Fernandez-Fernandez, Jaime A1 - Granacher, Urs A1 - Martinez-Martin, Isidoro A1 - Garcia-Tormo, José Vicente A1 - Herrero-Molleda, Alba A1 - Barbado, David A1 - García López, Juan T1 - Physical fitness and throwing speed in U13 versus U15 male handball players JF - BMC Sports Science, Medicine and Rehabilitation N2 - Background The aim of this study was to analyze the shoulder functional profile (rotation range of motion [ROM] and strength), upper and lower body performance, and throwing speed of U13 versus U15 male handball players, and to establish the relationship between these measures of physical fitness and throwing speed. Methods One-hundred and nineteen young male handball players (under (U)-13 (U13) [n = 85]) and U15 [n = 34]) volunteered to participate in this study. The participating athletes had a mean background of sytematic handball training of 5.5 ± 2.8 years and they exercised on average 540 ± 10.1 min per week including sport-specific team handball training and strength and conditioning programs. Players were tested for passive shoulder range-of-motion (ROM) for both internal (IR) and external rotation (ER) and isometric strength (i.e., IR and ER) of the dominant/non-dominant shoulders, overhead medicine ball throw (OMB), hip isometric abductor (ABD) and adductor (ADD) strength, hip ROM, jumps (countermovement jump [CMJ] and triple leg-hop [3H] for distance), linear sprint test, modified 505 change-of-direction (COD) test and handball throwing speed (7 m [HT7] and 9 m [HT9]). Results U15 players outperformed U13 in upper (i.e., HT7 and HT9 speed, OMB, absolute IR and ER strength of the dominant and non-dominant sides; Cohen’s d: 0.76–2.13) and lower body (i.e., CMJ, 3H, 20-m sprint and COD, hip ABD and ADD; d: 0.70–2.33) performance measures. Regarding shoulder ROM outcomes, a lower IR ROM was found of the dominant side in the U15 group compared to the U13 and a higher ER ROM on both sides in U15 (d: 0.76–1.04). It seems that primarily anthropometric characteristics (i.e., body height, body mass) and upper body strength/power (OMB distance) are the most important factors that explain the throw speed variance in male handball players, particularly in U13. Conclusions Findings from this study imply that regular performance monitoring is important for performance development and for minimizing injury risk of the shoulder in both age categories of young male handball players. Besides measures of physical fitness, anthropometric data should be recorded because handball throwing performance is related to these measures. KW - Overhead athletes KW - Shoulder KW - Injury risk KW - Sport-specific performance Y1 - 2022 U6 - https://doi.org/10.1186/s13102-022-00507-0 SN - 1758-2555 VL - 14 PB - Springer CY - London ER - TY - JOUR A1 - Fernandez-Fernandez, Jaime A1 - Granacher, Urs A1 - Sanz-Rivas, David A1 - Sarabia Marin, Jose Manuel A1 - Luis Hernandez-Davo, Jose A1 - Moya, Manuel T1 - Sequencing Effects of Neuromuscular Training on Physical Fitness in Youth Elite Tennis Players JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Fernandez-Fernandez, J, Granacher, U, Sanz-Rivas, D, Sarabia Marin, JM, Hernandez-Davo, JL, and Moya, M. Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J Strength Cond Res 32(3): 849-856, 2018-The aim of this study was to analyze the effects of a 5-week neuromuscular training (NMT) implemented before or after a tennis session in prepubertal players on selected components of physical fitness. Sixteen high-level tennis players with a mean age of 12.9 +/- 0.4 years participated in this study, and were assigned to either a training group performing NMT before tennis-specific training (BT; n = 8) or a group that conducted NMT after tennis-specific training (AT; n = 8). Pretest and posttest included: speed (5, 10, and 20 m); modified 5-0-5 agility test; countermovement jump (CMJ); overhead medicine ball throw (MBT); and serve velocity (SV). Results showed that the BT group achieved positive effects from pretest to posttest measures in speed (d = 0.52, 0.32, and 1.08 for 5, 10, and 20 m respectively), 5-0-5 (d = 0.22), CMJ (d = 0.29), MBT (d = 0.51), and SV (d = 0.32), whereas trivial (10 m, 20 m, CMJ, SV, and MBT) or negative effects (d = -0.19 and -0.24 for 5 m and 5-0-5, respectively) were reported for the AT group. The inclusion of an NMT session before the regular tennis training led to positive effects from pretest to posttest measures in performance-related variables (i.e., jump, sprint, change of direction capacity, as well as upper-body power), whereas conducting the same exercise sessions after the regular tennis training was not accompanied by the same improvements. KW - athletic performance KW - intermittent sport KW - plyometrics KW - speed KW - change of direction Y1 - 2018 U6 - https://doi.org/10.1519/JSC.0000000000002319 SN - 1064-8011 SN - 1533-4287 VL - 32 IS - 3 SP - 849 EP - 856 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Fernandez-Fernandez, Jaime A1 - Moya-Ramon, Manuel A1 - Santos-Rosa, Francisco Javier A1 - Gantois, Petrus A1 - Nakamura, Fabio Yuzo A1 - Sanz-Rivas, David A1 - Granacher, Urs T1 - Within-session sequence of the tennis serve training in youth elite players JF - International journal of environmental research and public health N2 - The influence of muscular fatigue on tennis serve performance within regular training sessions is unclear. Therefore, the aim of the present study was to examine the within-session sequence of the tennis serve in youth tennis. Twenty-five young male (14.9 +/- 0.9 years) and female (14.5 +/- 0.9 years) players participated in this within-subject crossover study, and they were randomly but sex-matched assigned to different training sequences (serve exercise before tennis training (BTS) or after tennis training (ATS)). Pre- and post-tests included serve velocity performance and accuracy, shoulder strength, and range-of-motion (ROM) performance (internal/external rotation). Results showed that after one week of serve training conducted following the ATS sequence, significant decreases were found in serve performance (e.g., speed and accuracy), with standardized differences ranging from d = 0.29 to 1.13, as well as the shoulder function (strength [d = 0.20 to 1.0] and ROM [d = 0.17 to 0.31]) in both female and male players, compared to the BTS sequence. Based on the present findings, it appears more effective to implement serve training before the regular tennis training in youth players. If applied after training, excessive levels of fatigue may cause shoulder imbalances that could be related to an increased injury risk. KW - athletes KW - athletic performance KW - fatigue KW - fitness KW - shoulder strength KW - range of motion Y1 - 2020 U6 - https://doi.org/10.3390/ijerph18010244 SN - 1660-4601 VL - 18 IS - 1 PB - MDPI CY - Basel ER - TY - GEN A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Children’s physical fitness development and related moderating effects of age and sex are well documented, especially boys’ and girls’ divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, “physical fitness” of schools correlated at r = 0.48 with their age effect which might imply that "fit schools” promote larger gains; expected secular trends from 2011 to 2019 were replicated. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 761 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549827 SN - 1866-8364 SP - 1 EP - 13 ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Effect of timing of school enrollment on physical fitness in third graders JF - Scientific Reports N2 - Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-11710-x SN - 2045-2322 VL - 12 SP - 1 EP - 11 PB - Springer Nature CY - London ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts JF - Scientific Reports N2 - Children’s physical fitness development and related moderating effects of age and sex are well documented, especially boys’ and girls’ divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, “physical fitness” of schools correlated at r = 0.48 with their age effect which might imply that "fit schools” promote larger gains; expected secular trends from 2011 to 2019 were replicated. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-97000-4 SN - 2045-2322 VL - 11 SP - 1 EP - 13 PB - Nature Portfolio CY - Berlin ER - TY - GEN A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Effect of timing of school enrollment on physical fitness in third graders T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 800 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-566933 SN - 1866-8364 IS - 800 ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Kliegl, Reinhold A1 - Arntz, Fabian A1 - Kriemler, Susi A1 - Granacher, Urs T1 - An update on secular trends in physical fitness of children and adolescents from 1972 to 2015 BT - a systematic review JF - Sports medicine N2 - Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01373-x SN - 0112-1642 SN - 1179-2035 VL - 51 IS - 2 SP - 303 EP - 320 PB - Springer CY - Northcote ER - TY - JOUR A1 - Gaebler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The effects of concurrent strength and endurance training on physical fitness and athletic performance in Youth BT - a systematic review and Meta-Analysis JF - Frontiers in physiology N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6-11 years, boys age 6-13 years) or adolescents (girls age 12-18 years, boys age 14-18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power-(e.g., jump height), endurance-(e.g., peak. VO2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01057 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 793 KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564419 SN - 1866-8364 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults JF - Frontiers in Human Neuroscience N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - https://doi.org/10.3389/fnhum.2022.871930 SN - 1662-5161 VL - 16 SP - 1 EP - 14 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Gebel, Arnd A1 - Lehmann, Tim A1 - Granacher, Urs T1 - Balance task difficulty affects postural sway and cortical activity in healthy adolescents JF - Experimental brain research N2 - Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands. KW - balance KW - postural control KW - EEG KW - Theta KW - Alpha-2 KW - ICA KW - youth Y1 - 2020 U6 - https://doi.org/10.1007/s00221-020-05810-1 SN - 0014-4819 SN - 1432-1106 VL - 238 IS - 5 SP - 1323 EP - 1333 PB - Springer CY - New York ER - TY - JOUR A1 - Gebel, Arnd A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Effects and dose-response relationship of balance training on balance performance in Youth BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0926-0 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 9 SP - 2067 EP - 2089 PB - Springer CY - Northcote ER - TY - GEN A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 583 KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439211 SN - 1866-8364 IS - 583 ER - TY - JOUR A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents JF - Frontiers in Physiology N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01135 SN - 1664-042X VL - 10 IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study JF - BMC public health N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. KW - Motor performance KW - Youth KW - Primary school KW - Maturation Y1 - 2014 U6 - https://doi.org/10.1186/1471-2458-14-499 SN - 1471-2458 VL - 14 PB - BioMed Central CY - London ER - TY - GEN A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children BT - a 4 year longitudinal study N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 360 KW - motor performance KW - youth KW - primary school KW - maturation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401418 ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study JF - PLoS one N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study JF - PLoS ONE N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - GEN A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 282 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-86613 ER - TY - JOUR A1 - Grabow, Lena A1 - Young, James D. A1 - Alcock, Lynsey R. A1 - Quigley, Patrick J. A1 - Byrne, Jeannette M. A1 - Granacher, Urs A1 - Skarabot, Jakob A1 - Behm, David George T1 - Higher Quadriceps Roller Massage Forces Do Not Amplify Range-of-Motion Increases nor Impair Strength and Jump Performance JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Grabow, L, Young, JD, Alcock, LR, Quigley, PJ, Byrne, JM, Granacher, U, Škarabot, J, and Behm, DG. Higher quadriceps roller massage forces do not amplify range-of-motion increases nor impair strength and jump performance. J Strength Cond Res 32(11): 3059–3069, 2018—Roller massage (RM) has been reported to increase range of motion (ROM) without subsequent performance decrements. However, the effects of different rolling forces have not been examined. The purpose of this study was to compare the effects of sham (RMsham), moderate (RMmod), and high (RMhigh) RM forces, calculated relative to the individuals' pain perception, on ROM, strength, and jump parameters. Sixteen healthy individuals (27 ± 4 years) participated in this study. The intervention involved three 60-second quadriceps RM bouts with RMlow (3.9/10 ± 0.64 rating of perceived pain [RPP]), RMmod (6.2/10 ± 0.64 RPP), and RMhigh (8.2/10 ± 0.44 RPP) pain conditions, respectively. A within-subject design was used to assess dependent variables (active and passive knee flexion ROM, single-leg drop jump [DJ] height, DJ contact time, DJ performance index, maximum voluntary isometric contraction [MVIC] force, and force produced in the first 200 milliseconds [F200] of the knee extensors and flexors). A 2-way repeated measures analysis of variance showed a main effect of testing time in active (p < 0.001, d = 2.54) and passive (p < 0.001, d = 3.22) ROM. Independent of the RM forces, active and passive ROM increased by 7.0% (p = 0.03, d = 2.25) and 15.4% (p < 0.001, d = 3.73) from premeasure to postmeasure, respectively. Drop jump and MVIC parameters were unaffected from pretest to posttest (p > 0.05, d = 0.33–0.84). Roller massage can be efficiently used to increase ROM without substantial pain and without subsequent performance impairments. KW - self-massage therapy KW - neuromuscular rolling KW - pressure KW - self-myofascial release Y1 - 2018 U6 - https://doi.org/10.1519/JSC.0000000000001906 SN - 1064-8011 SN - 1533-4287 VL - 32 IS - 11 SP - 3059 EP - 3069 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Grabow, Lena A1 - Young, James D. A1 - Byrne, Jeannette M. A1 - Granacher, Urs A1 - Behm, David George T1 - Unilateral Rolling of the Foot did not Affect Non-Local Range of Motion or Balance JF - Journal of sports science & medicine N2 - Non-local or crossover (contralateral and non-stretched muscles) increases in range-of-motion (ROM) and balance have been reported following rolling of quadriceps, hamstrings and plantar flexors. Since there is limited information regarding plantar sole (foot) rolling effects, the objectives of this study were to determine if unilateral foot rolling would affect ipsilateral and contralateral measures of ROM and balance in young healthy adults. A randomized within-subject design was to examine non-local effects of unilateral foot rolling on ipsilateral and contralateral limb ankle dorsiflexion ROM and a modified sit-and-reachtest (SRT). Static balance was also tested during a 30 s single leg stance test. Twelve participants performed three bouts of 60 s unilateral plantar sole rolling using a roller on the dominant foot with 60 s rest intervals between sets. ROM and balance measures were assessed in separate sessions at pre-intervention, immediately and 10 minutes post-intervention. To evaluate repeated measures effects, two SRT pre-tests were implemented. Results demonstrated that the second pre-test SRT was 6.6% higher than the first pre-test (p = 0.009, d = 1.91). There were no statistically significant effects of foot rolling on any measures immediately or 10 min post-test. To conclude, unilateral foot rolling did not produce statistically significant increases in ipsilateral or contralateral dorsiflexion or SRT ROM nor did it affect postural sway. Our statistically non-significant findings might be attributed to a lower degree of roller-induced afferent stimulation due to the smaller volume of myofascia and muscle compared to prior studies. Furthermore, ROM results from studies utilizing a single pre-test without a sufficient warm-up should be viewed critically. KW - Crossover KW - flexibility KW - postural sway KW - myofascial KW - self massage Y1 - 2017 SN - 1303-2968 VL - 16 SP - 209 EP - 218 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Granacher, Urs A1 - Borde, Ron T1 - Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances JF - Frontiers in physiology N2 - Introduction: Several sports demand an early start into long-term athlete development (LTAD) because peak performances are achieved at a relatively young age (e.g., gymnastics). However, the challenging combination of high training volumes and academic demands may impede youth athletes' cognitive and academic performances. Thus, the aims of this study were to examine the effects of a 1-year sport-specific training and/or physical education on physical fitness, body composition, cognitive and academic performances in youth athletes and their non-athletic peers. Methods: Overall, 45 prepubertal fourth graders from a German elite sport school were enrolled in this study. Participating children were either youth athletes from an elite sports class (n = 20, age 9.5 ± 0.5 years) or age-matched peers from a regular class (n = 25, age 9.6 ± 0.6 years). Over the 1-year intervention period, the elite sports class conducted physical education and sport-specific training (i.e., gymnastics, swimming, soccer, bicycle motocross [BMX]) during school time while the regular class attended physical education only. Of note, BMX is a specialized form of cycling that is performed on motocross tracks and affords high technical skills. Before and after intervention, tests were performed for the assessment of physical fitness (speed [20-m sprint], agility [star agility run], muscle power [standing long jump], flexibility [stand-and-reach], endurance [6-min-run], balance [single-leg stance]), body composition (e.g., muscle mass), cognitive (d2-test) and academic performance (reading [ELFE 1–6], writing [HSP 4–5], calculating [DEMAT 4]). In addition, grades in German, English, Mathematics, and physical education were documented. Results: At baseline, youth athletes showed better physical fitness performances (p < 0.05; d = 0.70–2.16), less relative body fat mass, more relative skeletal muscle mass (p < 0.01; d = 1.62–1.84), and similar cognitive and academic achievements compared to their non-athletic peers. Athletes' training volume amounted to 620 min/week over the 1-year period while their peers performed 155 min/week. After the intervention, significant differences were found in 6 out of 7 physical fitness tests (p < 0.05; d = 0.75–1.40) and in the physical education grades (p < 0.01; d = 2.36) in favor of the elite sports class. No significant between-group differences were found after the intervention in measures of body composition (p > 0.05; d = 0.66–0.67), cognition and academics (p > 0.05; d = 0.40–0.64). Our findings revealed no significant between-group differences in growth rate (deltas of pre-post-changes in body height and leg length). Discussion: Our results revealed that a school-based 1-year sport-specific training in combination with physical education improved physical fitness but did not negatively affect cognitive and academic performances of youth athletes compared to their non-athletic peers. It is concluded that sport-specific training in combination with physical education promotes youth athletes' physical fitness development during LTAD and does not impede their cognitive and academic development. KW - long-term KW - early sport specialization KW - motor skills KW - young athletes KW - scholastic demands Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00810 SN - 1664-042X VL - 8 SP - 1 EP - 11 PB - Frontiers CY - Lausanne ER - TY - GEN A1 - Granacher, Urs A1 - Borde, Ron T1 - Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances N2 - Introduction: Several sports demand an early start into long-term athlete development (LTAD) because peak performances are achieved at a relatively young age (e.g., gymnastics). However, the challenging combination of high training volumes and academic demands may impede youth athletes' cognitive and academic performances. Thus, the aims of this study were to examine the effects of a 1-year sport-specific training and/or physical education on physical fitness, body composition, cognitive and academic performances in youth athletes and their non-athletic peers. Methods: Overall, 45 prepubertal fourth graders from a German elite sport school were enrolled in this study. Participating children were either youth athletes from an elite sports class (n = 20, age 9.5 ± 0.5 years) or age-matched peers from a regular class (n = 25, age 9.6 ± 0.6 years). Over the 1-year intervention period, the elite sports class conducted physical education and sport-specific training (i.e., gymnastics, swimming, soccer, bicycle motocross [BMX]) during school time while the regular class attended physical education only. Of note, BMX is a specialized form of cycling that is performed on motocross tracks and affords high technical skills. Before and after intervention, tests were performed for the assessment of physical fitness (speed [20-m sprint], agility [star agility run], muscle power [standing long jump], flexibility [stand-and-reach], endurance [6-min-run], balance [single-leg stance]), body composition (e.g., muscle mass), cognitive (d2-test) and academic performance (reading [ELFE 1–6], writing [HSP 4–5], calculating [DEMAT 4]). In addition, grades in German, English, Mathematics, and physical education were documented. Results: At baseline, youth athletes showed better physical fitness performances (p < 0.05; d = 0.70–2.16), less relative body fat mass, more relative skeletal muscle mass (p < 0.01; d = 1.62–1.84), and similar cognitive and academic achievements compared to their non-athletic peers. Athletes' training volume amounted to 620 min/week over the 1-year period while their peers performed 155 min/week. After the intervention, significant differences were found in 6 out of 7 physical fitness tests (p < 0.05; d = 0.75–1.40) and in the physical education grades (p < 0.01; d = 2.36) in favor of the elite sports class. No significant between-group differences were found after the intervention in measures of body composition (p > 0.05; d = 0.66–0.67), cognition and academics (p > 0.05; d = 0.40–0.64). Our findings revealed no significant between-group differences in growth rate (deltas of pre-post-changes in body height and leg length). Discussion: Our results revealed that a school-based 1-year sport-specific training in combination with physical education improved physical fitness but did not negatively affect cognitive and academic performances of youth athletes compared to their non-athletic peers. It is concluded that sport-specific training in combination with physical education promotes youth athletes' physical fitness development during LTAD and does not impede their cognitive and academic development. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 354 KW - long-term KW - early sport specialization KW - motor skills KW - young athletes KW - scholastic demands Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403760 ER - TY - JOUR A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Hortobagyi, Tibor A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas T1 - The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review JF - Sports medicine N2 - Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises. Y1 - 2013 U6 - https://doi.org/10.1007/s40279-013-0041-1 SN - 0112-1642 VL - 43 IS - 7 SP - 627 EP - 641 PB - Springer CY - Auckland ER - TY - JOUR A1 - Granacher, Urs A1 - Gruber, Markus A1 - Foerderer, Dominik A1 - Strass, Dieter A1 - Gollhofer, Albert T1 - Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men N2 - There is growing evidence that aging and muscle fatigue result in impaired postural reflexes in humans. Therefore, the objective of this study was to examine the effects of ankle fatigue on functional reflex activity (ERA) during gait perturbations in young and elderly men. Twenty-eight young (27.0 +/- 3.1 years, n = 14) and old (67.2 +/- 3.7 years, n = 14) healthy active men participated in this study. Fatigue of the plantarflexors and dorsiflexors was induced by isokinetic contractions. Pre and post-fatigue, subjects were tested for their ability to compensate for decelerating gait perturbations while walking on a treadmill. Latency, ERA of lower extremity muscles and angular velocity of the ankle joint complex were analysed by means of surface electromyography and goniometry. After the fatigue protocol, no significant main and interaction effects were detected for the parameter latency in m. tibialis anterior (TA). For both groups, a significant pre to post-test decrease in ERA in TA (P<.001) was observed coming along with increases in antagonist coactivity (P=.013) and maximal angular velocity of the ankle joint (p=.007). However, no significant group x test interactions were found for the three parameters. Ankle fatigue has an impact on the ability to compensate for gait perturbations in young and elderly adults. However, no significant differences in all analysed parameters were detected between young and elderly subjects. These results may imply that age-related deteriorations in the postural control system do not specifically affect the ability to compensate for gait perturbations under fatigued condition. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/09666362 U6 - https://doi.org/10.1016/j.gaitpost.2010.03.016 SN - 0966-6362 ER - TY - JOUR A1 - Granacher, Urs A1 - Gruber, Markus A1 - Gollhofer, Albert T1 - Resistance training and neuromuscular performance in seniors N2 - Age-related processes in the neuromuscular and the somatosensory system are responsible for decreases in maximal and explosive force production capacity and deficits in postural control. Thus, the objectives of this study were to investigate the effects of resistance training on strength performance and on postural control in seniors. Forty healthy seniors (67 +/- 1 yrs) participated in this study. Subjects were randomly assigned to a resistance training (n = 20) and a control group (n = 20). Resistance training for the lower extremities lasted for 13 weeks at 80% of the one repetition maximum. Pre and post tests included the measurement of maximal isometric leg extension force with special emphasis on the early part of the force-time-curve and the assessment of static (functional reach test) and dynamic (tandem walk test, platform perturbation) postural control. Resistance training resulted I in an enhanced strength performance with increases I in explosive force exceeding those in maximal strength. Improved performances in the functional reach and in the tandem walk test were observed. Resistance training did not have an effect: on the compensation of platform perturbations. Increases in strength performance can primarily be explained by an improved neural drive of the agonist muscles. The inconsistent effect of resistance training on postural control may be explained by heterogeneity of testing methodology or by the incapability of isolated resisiance training to improve postural control. Y1 - 2009 UR - http://www.thieme-connect.de/ejournals/toc/sportsmed U6 - https://doi.org/10.1055/s-0029-1224178 SN - 0172-4622 ER - TY - GEN A1 - Granacher, Urs A1 - Hortobágyi, Tibor T1 - Exercise to improve mobility in healthy aging T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 897 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432419 SN - 1866-8372 IS - 897 ER - TY - GEN A1 - Granacher, Urs A1 - Kiss, Rainer A1 - Lüder, Benjamin T1 - Single- and Dual-Task Balance Training Are Equally Effective in Youth T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 432 KW - postural control KW - cognitive performance KW - attentional demand KW - dual-task costs KW - cognitive interference Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411679 IS - 432 ER - TY - JOUR A1 - Granacher, Urs A1 - Kiss, Rainer A1 - Lüder, Benjamin T1 - Single- and Dual-Task Balance Training Are Equally Effective in Youth JF - Frontiers in Psychology N2 - Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. KW - postural control KW - cognitive performance KW - attentional demand KW - dual-task costs KW - cognitive interference Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.00912 SN - 1664-1078 VL - 9 SP - 1 EP - 12 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Roettger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 332 KW - elderly KW - gait KW - muscle strength KW - physical performance KW - postural balance Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-399994 ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Röttger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults JF - Gerontology N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. KW - Elderly KW - Gait KW - Muscle strength KW - Physical performance KW - Postural balance Y1 - 2013 U6 - https://doi.org/10.1159/000343152 SN - 0304-324X VL - 59 IS - 2 SP - 105 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Roettger, Katrin A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas T1 - Relationships between trunk muscle strength, spinal mobility, and balance performance in older adults JF - Journal of aging and physical activity N2 - This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 +/- 4 years; activity level: 13 +/- 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1-33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors. KW - elderly KW - core KW - gait KW - postural balance KW - force KW - physical performance Y1 - 2014 U6 - https://doi.org/10.1123/JAPA.2013-0108 SN - 1063-8652 SN - 1543-267X VL - 22 IS - 4 SP - 490 EP - 498 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Buesch, Dirk A1 - Mühlbauer, Thomas A1 - Prieske, Olaf A1 - Puta, Christian A1 - Gollhofer, Albert A1 - Behm, David George T1 - Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development JF - Frontiers in physiology N2 - During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes. KW - weight lifting KW - children KW - adolescents KW - physical fitness KW - muscle strength KW - muscle power KW - muscular endurance Y1 - 2016 U6 - https://doi.org/10.3389/fphys.2016.00164 SN - 1664-042X VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Büsch, Dirk A1 - Mühlbauer, Thomas A1 - Prieske, Olaf A1 - Puta, Christian A1 - Gollhofer, Albert A1 - Behm, David George T1 - Effects of resistance training in youth athletes on muscular fitness and athletic performance BT - a conceptual model for long-term athlete development T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 429 KW - weight lifting KW - children KW - adolescents KW - physical fitness KW - muscle strength KW - muscle power KW - muscular endurance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406574 IS - 429 ER - TY - GEN A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Göstemeyer, Gerd A1 - Gruber, Stefanie A1 - Gruber, Markus T1 - The performance of balance exercises during daily tooth brushing is not sufficient to improve balance and muscle strength in healthy older adults T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60–72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 733 KW - Balance KW - Daily life KW - Exercise KW - Healthy aging KW - Mobility Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-529379 SN - 1866-8364 ER -