TY - JOUR A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Schindler, Wolfram A1 - Frisch, Johannes A1 - Kurpiers, Jona A1 - Kniepert, Juliane A1 - Inal, Sahika A1 - Pingel, Patrick A1 - Fostiropoulos, Konstantinos A1 - Koch, Norbert A1 - Neher, Dieter T1 - Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells JF - Journal of the American Chemical Society N2 - A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells. Y1 - 2012 U6 - https://doi.org/10.1021/ja305039j SN - 0002-7863 VL - 134 IS - 36 SP - 14932 EP - 14944 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Inal, Sahika T1 - Responsive polymers for optical sensing applications T1 - Responsive Polymere für optische Sensoren N2 - LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes. The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy. N2 - Als Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde. Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays. KW - Responsive Polymere KW - Fluoreszenz KW - Sensor KW - Konjugierten polyelektrolyt KW - responsive polymer KW - fluorescence KW - sensor KW - conjugated polyelectrolyte Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70806 ER - TY - JOUR A1 - Inal, Sahika A1 - Castellani, Mauro A1 - Sellinger, Alan A1 - Neher, Dieter T1 - Relationship of photophysical properties and the device performance of novel hybrid small-molecular/polymeric solar cells N2 - We investigate solar cells comprised of a vinazene derivative (HV-BT) as the electron acceptor and the well- known polymer poly(3-hexylthiophene) as the electron donor. In the as-prepared blend, most of the excited state species, including the excimers on HV-BT, are quenched at the heterojunction. Although the photophysical properties of the blends change upon annealing, the blend solar cells largely remain uninfluenced by such treatments. A significant improvement is, however, observed when inducing phase separation at a longer length scale, for example, in solution-processed bilayer devices. Hereby, both the fill factor (FF) and the open circuit voltage are considerably increased, pointing to the importance of the heterojunction topology and the layer composition at the charge extracting contacts. An optimized device exhibits a power conversion efficiency of close to 1%. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.200900221 SN - 1022-1336 ER - TY - JOUR A1 - Inal, Sahika A1 - Chiappisi, Leonardo A1 - Kölsch, Jonas D. A1 - Kraft, Mario A1 - Appavou, Marie-Sousai A1 - Scherf, Ullrich A1 - Wagner, Manfred A1 - Hansen, Michael Ryan A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements. Y1 - 2013 U6 - https://doi.org/10.1021/jp408864s SN - 1520-6106 VL - 117 IS - 46 SP - 14576 EP - 14587 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. Y1 - 2013 U6 - https://doi.org/10.1039/c3tc31304b SN - 2050-7526 VL - 1 IS - 40 SP - 6603 EP - 6612 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Kraft, Mario A1 - Gutacker, Andrea A1 - Janietz, Dietmar A1 - Scherf, Ullrich A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte JF - MACROMOLECULAR CHEMISTRY AND PHYSICS N2 - Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device. KW - aqueous solutions KW - conjugated polyelectrolytes KW - fluorescence (or Forster) KW - resonance energy transfer KW - phase transitions KW - thermoresponsive polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201200493 SN - 1022-1352 VL - 214 IS - 4 SP - 435 EP - 445 PB - WILEY-V C H VERLAG GMBH CY - WEINHEIM ER - TY - GEN A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 251 KW - anionic polymerizations KW - dilute aqueous-solutions KW - ether methacrylates KW - n-isopropylacrylamide KW - oligo(ethylene glycol) methacrylate KW - phase-transitions KW - protein interactions KW - solvatochromic fluorophore KW - thermoresponsive polymers KW - to-coil transition Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95379 SP - 6603 EP - 6612 ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tc/c3tc31304b U6 - https://doi.org/10.1039/C3TC31304B ER - TY - GEN A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Sellrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer–antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 249 KW - intramolecular charge-transfer KW - phase-transitions KW - responsive polymers KW - sensitivity KW - thermometer KW - dyes KW - modulation KW - assemblies KW - antibodies KW - binding Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95336 SP - 6373 EP - 6381 ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Sellrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein JF - Journal of materials chemistry : B, Materials for biology and medicine N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. Y1 - 2013 U6 - https://doi.org/10.1039/c3tb21245a SN - 2050-750X SN - 2050-7518 VL - 1 IS - 46 SP - 6373 EP - 6381 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Selrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tb/c3tb21245a U6 - https://doi.org/10.1039/c3tb21245a ER - TY - JOUR A1 - Shalom, Menny A1 - Guttentag, Miguel A1 - Fettkenhauer, Christian A1 - Inal, Sahika A1 - Neher, Dieter A1 - Llobet, Antoni A1 - Antonietti, Markus T1 - In situ formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble metal free photocatalysis JF - Chemistry of materials : a publication of the American Chemical Society N2 - Herein, we report the facile synthesis of an efficient roll-like carbon nitride (C3N4) photocatalyst for hydrogen production using a supramolecular complex composed of cyanuric acid, melamine, and barbituric acid as the starting monomers. Optical and photocatalytic investigations show, along with the known red shift of absorption into the visible region, that the insertion of barbituric acid results in the in situ formation of in-plane heterojuctions, which enhance the charge separation process under illumination. Moreover, platinum as the standard cocatalyst in photocatalysis could be successfully replaced with first row transition metal salts and complexes under retention of 50% of the catalytic activity. Their mode of deposition and interaction with the semiconductor was studied in detail. Utilization of the supramolecular approach opens new opportunities to manipulate the charge transfer process within carbon nitride with respect to the design of a more efficient carbon nitride photocatalyst with controlled morphology and optical properties. Y1 - 2014 U6 - https://doi.org/10.1021/cm503258z SN - 0897-4756 SN - 1520-5002 VL - 26 IS - 19 SP - 5812 EP - 5818 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shalom, Menny A1 - Inal, Sahika A1 - Fettkenhauer, Christian A1 - Neher, Dieter A1 - Antonietti, Markus T1 - Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers JF - Journal of the American Chemical Society N2 - Here we report a new and simple synthetic pathway to form ordered, hollow carbon nitride structures, using a cyanuric acid melamine (CM) complex in ethanol as a starting product. A detailed analysis of the optical and photocatalytic properties shows that optimum hollow carbon nitride structures are formed after 8 h of condensation. For this condensation time, we find a significantly reduced fluorescence intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes. Enhanced charge transfer is seen as well from a drastic increase of the photocatalytic activity in the degradation of rhodamine B dye, which is shown to proceed via photoinduced hole transfer. Moreover, we show that various CM morphologies can be obtained using different solvents, which leads to diverse ordered carbon nitride architectures. In all cases, the CM-C3N4 structures exhibited superior photocatalytic activity compared to the bulk material. The utilization of CM hydrogen-bonded complexes opens new opportunities for the significant improvement of carbon nitride synthesis, structure, and optical properties toward an efficient photoactive material for catalysis. Y1 - 2013 U6 - https://doi.org/10.1021/ja402521s SN - 0002-7863 VL - 135 IS - 19 SP - 7118 EP - 7121 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shalom, Menny A1 - Inal, Sahika A1 - Neher, Dieter A1 - Antonietti, Markus T1 - SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis JF - Catalysis today : a serial publication dealing with topical themes in catalysis and related subjects N2 - The effect of SiO2 nanoparticles on carbon nitride (C3N4) photoactivity performance is described. The composite SiO2-C3N4 materials exhibit a higher activity in the photo degradation of RhB dye. A detailed analysis of the chemical and optical properties of the composite C3N4 materials shows that the photo activity increases with higher SiO2 concentration. We found out that the presence of SiO2 nanoparticles strongly affects the fluorescence intensity of the matrix and life time by the creation of new energy states for charge transfer within the C3N4. Furthermore, the use of SiO2 in the synthesis of C3N4 leads to new morphology with higher surface area which results in another, secondary improvement of C3N4 photoactivity. The effect of different surfaces within C3N4 on its chemical and electronic properties is discussed and a tentative mechanism is proposed. The utilization of SiO2 nanoparticles improves both photophysical and chemical properties of C3N4 and opens new possibilities for further enhancement of C3N4 catalytic properties by the formation of composites with many other materials. KW - Carbon nitride KW - SiO2 composite material KW - Photocatalysis KW - RhB degradation Y1 - 2014 U6 - https://doi.org/10.1016/j.cattod.2013.12.013 SN - 0920-5861 SN - 1873-4308 VL - 225 SP - 185 EP - 190 PB - Elsevier CY - Amsterdam ER -