TY - THES A1 - Kemter, Matthias T1 - River floods in a changing world T1 - Flusshochwasser in einer sich ändernden Welt N2 - River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed. N2 - Flusshochwasser gehören zu den verheerendsten Naturkatastrophen weltweit. Ihre Entstehung hängt von klimatischen Bedingungen ab, weshalb vorhergesagt wird, dass sich ihre Magnituden und Häufigkeit durch den Klimawandel ändern werden. Daher ist es notwendig zu untersuchen, auf welche Art sich ein verändertes Klima - auch im Vergleich mit Effekten durch Landbedeckungsänderungen - auf Hochwasserentstehung und -gefahr auswirken könnte und das bereits getan hat. Diese kumulative Arbeit beleuchtet drei Teilaspekte dieses Themas. In der ersten Studie werden mittels maschinellen Lernens die wichtigsten Variablen entdeckt und untersucht, die die Änderungen von Hochwassermagnituden in 4390 Einzugsgebieten in den USA von 1960-2010 kontrolliert haben. Es wird gezeigt, dass Änderungen der Regenmengen der entscheidende Faktor waren, während Landnutzung regional von großer Bedeutung war. Die zweite Studie untersucht von 1960-2010 Änderungen in der Distanz innerhalb welcher Hochwasser in verschiedenen Flüssen gleichzeitig auftreten. Daten von 3872 europäischen Flusspegeln zeigen, dass sich die Fläche der gleichzeitigen Überflutung in Westeuropa vergrößert und in Osteuropa verkleinert hat, was auf abnehmende Relevanz der Schneeschmelze bei der Hochwasserentstehung zurückzuführen ist. Die dritte Studie behandelt die Auswirkungen kaskadierender Naturkatastrophen auf Hochwasser am Beispiel der australischen Waldbrände 2019/2020. Die Untersuchung der verschieden stark betroffenen Nebenflüsse des Manning River zeigt, dass in einer Naturgefahrenkaskade selbst gewöhnliche Hochwasser substantielle Auswirkungen haben können. Diese Arbeit zeigt, dass die Menschheit Hochwassergefahren auf verschiedene Arten und mit räumlich sowie zeitlich variablen Resultaten beeinflusst. Diese Aspekte müssen zukünftig global näher untersucht und ihre Entwicklung für die Zukunft modelliert werden, um fundierte Entscheidungen in Hochwasserschutz treffen zu können. Für Hochwassermagnituden und die Fläche gleichzeitiger Überflutung können hierfür die präsentierten Methoden adaptiert werden. KW - hydrology KW - climate change KW - flood KW - Hydrologie KW - Klimawandel KW - Hochwasser Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558564 ER - TY - THES A1 - Samprogna Mohor, Guilherme T1 - Exploring the transferability of flood loss models across flood types N2 - The estimation of financial losses is an integral part of flood risk assessment. The application of existing flood loss models on locations or events different from the ones used to train the models has led to low performance, showing that characteristics of the flood damaging process have not been sufficiently well represented yet. To improve flood loss model transferability, I explore various model structures aiming at incorporating different (inland water) flood types and pathways. That is based on a large survey dataset of approximately 6000 flood-affected households which addresses several aspects of the flood event, not only the hazard characteristics but also information on the affected building, socioeconomic factors, the household's preparedness level, early warning, and impacts. Moreover, the dataset reports the coincidence of different flood pathways. Whilst flood types are a classification of flood events reflecting their generating process (e.g. fluvial, pluvial), flood pathways represent the route the water takes to reach the receptors (e.g. buildings). In this work, the following flood pathways are considered: levee breaches, river floods, surface water floods, and groundwater floods. The coincidence of several hazard processes at the same time and place characterises a compound event. In fact, many flood events develop through several pathways, such as the ones addressed in the survey dataset used. Earlier loss models, although developed with one or multiple predictor variables, commonly use loss data from a single flood event which is attributed to a single flood type, disregarding specific flood pathways or the coincidence of multiple pathways. This gap is addressed by this thesis through the following research questions: 1. In which aspects do flood pathways of the same (compound inland) flood event differ? 2. How much do factors which contribute to the overall flood loss in a building differ in various settings, specifically across different flood pathways? 3. How well can Bayesian loss models learn from different settings? 4. Do compound, that is, coinciding flood pathways result in higher losses than a single pathway, and what does the outcome imply for future loss modelling? Statistical analysis has found that households affected by different flood pathways also show, in general, differing characteristics of the affected building, preparedness, and early warning, besides the hazard characteristics. Forecasting and early warning capabilities and the preparedness of the population are dominated by the general flood type, but characteristics of the hazard at the object-level, the impacts, and the recovery are more related to specific flood pathways, indicating that risk communication and loss models could benefit from the inclusion of flood-pathway-specific information. For the development of the loss model, several potentially relevant predictors are analysed: water depth, duration, velocity, contamination, early warning lead time, perceived knowledge about self-protection, warning information, warning source, gap between warning and action, emergency measures, implementation of property-level precautionary measures (PLPMs), perceived efficacy of PLPMs, previous flood experience, awareness of flood risk, ownership, building type, number of flats, building quality, building value, house/flat area, building area, cellar, age, household size, number of children, number of elderly residents, income class, socioeconomic status, and insurance against floods. After a variable selection, descriptors of the hazard, building, and preparedness were deemed significant, namely: water depth, contamination, duration, velocity, building area, building quality, cellar, PLPMs, perceived efficacy of PLPMs, emergency measures, insurance, and previous flood experience. The inclusion of the indicators of preparedness is relevant, as they are rarely involved in loss datasets and in loss modelling, although previous studies have shown their potential in reducing losses. In addition, the linear model fit indicates that the explanatory factors are, in several cases, differently relevant across flood pathways. Next, Bayesian multilevel models were trained, which intrinsically incorporate uncertainties and allow for partial pooling (i.e. different groups of data, such as households affected by different flood pathways, can learn from each other), increasing the statistical power of the model. A new variable selection was performed for this new model approach, reducing the number of predictors from twelve to seven variables but keeping factors of the hazard, building, and preparedness, namely: water depth, contamination, duration, building area, PLPMs, insurance, and previous flood experience. The new model was trained not only across flood pathways but also across regions of Germany, divided according to general socioeconomic factors and insurance policies, and across flood events. The distinction across regions and flood events did not improve loss modelling and led to a large overlap of regression coefficients, with no clear trend or pattern. The distinction of flood pathways showed credibly distinct regression coefficients, leading to a better understanding of flood loss modelling and indicating one potential reason why model transferability has been challenging. Finally, new model structures were trained to include the possibility of compound inland floods (i.e. when multiple flood pathways coincide on the same affected asset). The dataset does not allow for verifying in which sequence the flood pathway waves occurred and predictor variables reflect only their mixed or combined outcome. Thus, two Bayesian models were trained: 1. a multi-membership model, a structure which learns the regression coefficients for multiple flood pathways at the same time, and 2. a multilevel model wherein the combination of coinciding flood pathways makes individual categories. The multi-membership model resulted in credibly different coefficients across flood pathways but did not improve model performance in comparison to the model assuming only a single dominant flood pathway. The model with combined categories signals an increase in impacts after compound floods, but due to the uncertainty in model coefficients and estimates, it is not possible to ascertain such an increase as credible. That is, with the current level of uncertainty in differentiating the flood pathways, the loss estimates are not credibly distinct from individual flood pathways. To overcome the challenges faced, non-linear or mixed models could be explored in the future. Interactions, moderation, and mediation effects, as well as non-linear effects, should also be further studied. Loss data collection should regularly include preparedness indicators, and either data collection or hydraulic modelling should focus on the distinction of coinciding flood pathways, which could inform loss models and further improve estimates. Flood pathways show distinct (financial) impacts, and their inclusion in loss modelling proves relevant, for it helps in clarifying the different contribution of influencing factors to the final loss, improving understanding of the damaging process, and indicating future lines of research. N2 - Die Schätzung finanzieller Schäden ist ein wesentlicher Bestandteil der Hochwasserrisikoanalyse. Die Anwendung bestehender Hochwasserschadensmodelle auf anderen Orten oder Ereignisse als jene, die zur Kalibrierung der Modelle verwendet wurden, hat zu einer geringen Modellgüte geführt. Dies zeigt, dass die Merkmale des Hochwasserschadensprozesses in den Modellen noch nicht hinreichend repräsentiert sind. Um die Übertragbarkeit von Hochwasserschadensmodellen zu verbessern, habe ich verschiedene Modellstrukturen untersucht, die darauf abzielen, unterschiedliche Hochwassertypen und wirkungspfade einzubeziehen. Dies geschieht auf der Grundlage eines großen Datensatzes von ca. 6000 Fällen überschwemmungsgeschädigter Haushalte, der mehrere Aspekte des Hochwasserereignisses berücksichtigt. Diese sind nicht nur die Gefährdungsmerkmale, sondern auch Informationen über das betroffene Gebäude, sozioökonomische Faktoren, die Vorsorge des Haushalts, die Frühwarnung und die Auswirkungen. Darüber hinaus enthält der Datensatz Informationen über das Vorkommen verschiedener Hochwasserwirkungspfade. Im Gegensatz zu den Hochwassertypen, die eine Klassifizierung von Hochwasserereignissen darstellen und deren Entstehungsprozess widerspiegeln (z. B. Fluss- oder Regenhochwasser), repräsentieren die Hochwasserwirkungspfade den Weg, den das Wasser nimmt, um die Rezeptoren (z. B. die Gebäude) zu erreichen. In dieser Arbeit werden folgende Hochwasserwirkungspfade betrachtet: Deichbrüche, Flusshochwasser, Überflutung durch oberflächlich abfließendes Wasser und Grundwasserhochwasser. Das Zusammentreffen mehrerer Gefahrenprozesse zur selben Zeit und am selben Ort kennzeichnet ein Verbundereignis (compound event). Tatsächlich entwickeln sich viele Hochwasserereignisse über mehrere Wirkungspfade, z. B. die vorher erwähnten. Frühere Schadensmodelle, die zwar mit einer oder mehreren Prädiktorvariablen entwickelt wurden, verwenden in der Regel Schadensdaten eines einzelnen Hochwasserereignisses, das einem bestimmten Hochwassertyp zugeordnet wird. Spezifische Hochwasserwirkungspfade oder das Zusammentreffen mehrerer Wirkungspfade werden dabei vernachlässigt. An dieser Forschungslücke setzt die vorliegende Arbeit mit folgenden Forschungsfragen an: 1) Inwiefern unterscheiden sich die Hochwasserwirkungspfade desselben (zusammengesetzten) Hochwasserereignisses? 2) Inwieweit unterscheiden sich die Faktoren, die zum gesamten Hochwasserschaden an einem Gebäude beitragen, in verschiedenen Situationen, insbesondere bei verschiedenen Hochwasserwirkungspfaden? 3) Wie gut können Bayes'sche Schadensmodelle aus verschiedenen Situationen lernen? 4) Führen gemischte, d. h. mehrere zusammentreffende Hochwasserwirkungspfade, zu höheren Schäden als ein einzelner Pfad und was bedeuten die Ergebnisse für die künftige Schadensmodellierung? Die statistische Analyse zeigt, dass Haushalte, die von verschiedenen Hochwasserwirkungspfaden betroffen sind, im Allgemeinen neben den Gefahrenmerkmalen auch unterschiedliche Eigenschaften des betroffenen Gebäudes sowie der Vorsorge und der Frühwarnung aufweisen. Die Variablen des Frühwarnsystems und die Vorsorge der Bevölkerung werden von dem allgemeinen Hochwassertyp dominiert, wohingegen die Merkmale der Gefahr auf Objektebene, die Auswirkungen und die Wiederherstellung von den spezifischeren Hochwasserwirkungspfaden dominiert. Dies deutet darauf hin, dass Risikokommunikation und Schadensmodelle von der Einbeziehung hochwasserwirkungspfad-spezifischer Informationen profitieren könnten. Für die Entwicklung des Schadensmodells wurden mehrere potenziell relevante Prädiktoren analysiert: Wassertiefe, Dauer, Geschwindigkeit, Verschmutzung, Vorwarnzeit, wahrgenommenes Wissen über Selbstschutz, Warninformation, Warnquelle, Zeitspanne zwischen Warnung und Handlung, Notfallmaßnahmen, Umsetzung von Vorsorgemaßnahmen auf Grundstücksebene (PLPMs), wahrgenommene Wirksamkeit von PLPMs, frühere Hochwassererfahrungen, Bewusstsein für das Hochwasserrisiko, Eigentumsverhältnisse, Gebäudetyp, Anzahl der Wohnungen, Gebäudequalität, Gebäudewert, Haus-/Wohnungsfläche, Gebäudefläche, Keller, Alter der befragten Person, Haushaltsgröße, Anzahl der Kinder, Anzahl der älteren Menschen, monatliches Einkommen sowie sozioökonomischer Status und Versicherung gegen Hochwasser. Nach einer Variablenauswahl wurden folgende Deskriptoren der Gefahr, des Gebäudes und der Vorbereitung als signifikant eingestuft: Wassertiefe, Verschmutzung, Überflutungsdauer, Geschwindigkeit, Gebäudefläche, Gebäudequalität, Keller, PLPMs, wahrgenommene Wirksamkeit von PLPMs, Notfallmaßnahmen, Versicherung und frühere Hochwassererfahrung. Die Einbeziehung der letztgenannten Gruppe von Faktoren ist von Bedeutung, da Indikatoren für die Vorsorge nur selten in Schadensdatensätze und Schadensmodellierung integriert werden, obwohl frühere Studien gezeigt haben, dass sie zur Verringerung von Schäden beitragen können. Die lineare Modellanpassung zeigte, dass die erklärenden Faktoren in mehreren Fällen je nach Hochwasserpfad unterschiedlich relevant sind. Als Nächstes wurden Bayes'sche Mehrebenenmodelle trainiert, die Unsicherheiten immanent einbeziehen und ein partielles Pooling ermöglichen. Das heißt, verschiedene Datengruppen (Haushalte, die von verschiedenen Hochwasserwirkungspfaden betroffen sind) können voneinander lernen, was die statistische Aussagekraft des Modells erhöht. Für diesen neuen Modellansatz wurde eine aktualisierte Variablenauswahl getroffen, bei der die Anzahl der Prädiktoren von zwölf auf sieben reduziert wurde, aber Faktoren der Gefahr, des Gebäudes und der Vorbereitung beibehalten wurden. Diese sind Wassertiefe, Verschmutzung, Dauer, Gebäudefläche, PLPMs, Versicherung und frühere Hochwassererfahrung. Das neue Modell wurde nicht nur über Hochwasserwirkungspfade, sondern auch über Regionen in Deutschland – unterteilt nach allgemeinen sozioökonomischen Faktoren und Versicherungspolicen – sowie über Hochwasserereignisse trainiert. Die Unterscheidung nach Regionen und Hochwasserereignissen verbesserte die Schadensmodellierung nicht und führte zu einer großen Überlappung der Regressionskoeffizienten ohne klaren Trend oder eindeutiges Muster. Die Unterscheidung nach Hochwasserwirkungspfaden ergab glaubhaft unterschiedliche Regressionskoeffizienten, was zu einem besseren Verständnis der Modellierung von Hochwasserschäden führte und einen möglichen Grund für die schwierige Übertragbarkeit der Modelle auf andere Situationen darstellt. Schließlich wurden neue Modellstrukturen trainiert, um die Möglichkeit gemischter (Binnen)überschwemmungen, d. h. das Zusammentreffen mehrerer Hochwasserwirkungspfade auf demselben Objekt, zu berücksichtigen. Anhand des Datensatzes lässt sich nicht überprüfen, in welcher Reihenfolge die Hochwasserpfadwellen auftraten, und die Prädiktorvariablen zeigen nur deren gemischtes oder kombiniertes Ergebnis. Daher wurden zwei Bayes'sche Modelle trainiert: 1) ein Multi-Membership-Modell als Struktur, die die Regressionskoeffizienten für mehrere Hochwasserwirkungspfade gleichzeitig lernt, und 2) ein Mehrebenenmodell, bei dem die Kombination zusammentreffender Hochwasserwirkungspfade einzelne Kategorien bildet. Ersteres führte zu glaubhaft unterschiedlichen Koeffizienten für die verschiedenen Hochwasserwirkungspfade, verbesserte aber nicht die Modellleistung im Vergleich zu dem Modell, das nur einen einzigen, dominanten Hochwasserpfad annimmt. Das Modell mit kombinierten Wirkungspfadkategorien deutet auf eine Zunahme der Auswirkungen nach gemischten Überschwemmungen hin. Aufgrund der Unsicherheit der Modellkoeffizienten und -schätzungen ist es jedoch nicht möglich, eine solche Zunahme als glaubwürdig plausibel zu bewerten. Das heißt, bei dem derzeitigen Grad an Unsicherheit hinsichtlich der Differenzierung der Hochwasserwirkungspfade sind die Schadensschätzungen nicht glaubwürdig von den einzelnen Hochwasserwirkungspfaden zu unterscheiden. Zur Überwindung der bestehenden Probleme könnten nichtlineare oder gemischte Modelle untersucht werden. Zudem sollten Interaktionseffekte, Moderations- und Mediationseffekte sowie nichtlineare Effekte weiter erforscht werden. Bei der Schadensdaten\-erhebung sollten außerdem regelmäßig Indikatoren für die Vorsorge einbezogen werden, und entweder bei der Datenerhebung oder bei der hydraulischen Modellierung sollte der Schwerpunkt auf der Unterscheidung kombinierter Hochwasserwirkungspfade liegen, was die Schadensmodelle bereichern und die Schätzungen weiter verbessern könnte. Hochwasserwirkungspfade zeigen differente (finanzielle) Auswirkungen und ihre Einbeziehung in die Schadensmodellierung hat sich als relevant erwiesen, da sie dazu beitragen, den unterschiedlichen Beitrag der Einflussfaktoren zum endgültigen Schaden zu klären, das Verständnis des Schadensprozesses zu verbessern und künftige Forschungslinien aufzuzeigen. T2 - Untersuchung der Übertragbarkeit von Hochwasserschadensmodellen über Hochwassertypen KW - flood KW - financial loss KW - flood loss modelling KW - Bayesian model KW - multilevel modelling KW - flood pathway KW - Hochwasser KW - finanzielle Schäden KW - Schätzung finanzieller Schäden KW - Bayes'sche Modelle KW - Mehrebenenmodelle KW - Hochwasserwirkungspfad Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557141 ER - TY - THES A1 - Rottler, Erwin T1 - Transient merging of two Rhine flow regimes from climate change T1 - Vorübergehende Überlagerung von zwei Abflussregimen im Rhein durch den Klimawandel N2 - River flooding poses a threat to numerous cities and communities all over the world. The detection, quantification and attribution of changes in flood characteristics is key to assess changes in flood hazard and help affected societies to timely mitigate and adapt to emerging risks. The Rhine River is one of the major European rivers and numerous large cities reside at its shores. Runoff from several large tributaries superimposes in the main channel shaping the complex from regime. Rainfall, snowmelt as well as ice-melt are important runoff components. The main objective of this thesis is the investigation of a possible transient merging of nival and pluvial Rhine flood regimes under global warming. Rising temperatures cause snowmelt to occur earlier in the year and rainfall to be more intense. The superposition of snowmelt-induced floods originating from the Alps with more intense rainfall-induced runoff from pluvial-type tributaries might create a new flood type with potentially disastrous consequences. To introduce the topic of changing hydrological flow regimes, an interactive web application that enables the investigation of runoff timing and runoff season- ality observed at river gauges all over the world is presented. The exploration and comparison of a great diversity of river gauges in the Rhine River Basin and beyond indicates that river systems around the world undergo fundamental changes. In hazard and risk research, the provision of background as well as real-time information to residents and decision-makers in an easy accessible way is of great importance. Future studies need to further harness the potential of scientifically engineered online tools to improve the communication of information related to hazards and risks. A next step is the development of a cascading sequence of analytical tools to investigate long-term changes in hydro-climatic time series. The combination of quantile sampling with moving average trend statistics and empirical mode decomposition allows for the extraction of high resolution signals and the identification of mechanisms driving changes in river runoff. Results point out that the construction and operation of large reservoirs in the Alps is an important factor redistributing runoff from summer to winter and hint at more (intense) rainfall in recent decades, particularly during winter, in turn increasing high runoff quantiles. The development and application of the analytical sequence represents a further step in the scientific quest to disentangling natural variability, climate change signals and direct human impacts. The in-depth analysis of in situ snow measurements and the simulations of the Alpine snow cover using a physically-based snow model enable the quantification of changes in snowmelt in the sub-basin upstream gauge Basel. Results confirm previous investigations indicating that rising temperatures result in a decrease in maximum melt rates. Extending these findings to a catchment perspective, a threefold effect of rising temperatures can be identified: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Furthermore, results indicate that due to the wide range of elevations in the basin, snowmelt does not occur simultaneously at all elevation, but elevation bands melt together in blocks. The beginning and end of the release of meltwater seem to be determined by the passage of warm air masses, and the respective elevation range affected by accompanying temperatures and snow availability. Following those findings, a hypothesis describing elevation-dependent compensation effects in snowmelt is introduced: In a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevations, i.e., the block of elevation bands providing most water to the snowmelt-induced runoff is located at higher elevations. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier. The timing of the snowmelt-induced runoff, however, stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below. The insights on past and present changes in river runoff, snow covers and underlying mechanisms form the basis of investigations of potential future changes in Rhine River runoff. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios is used to analyse future changes in streamflow, snowmelt, precipitation and evapotranspiration at 1.5, 2.0 and 3.0 ◦ C global warming. Simulation results suggest that future changes in flood characteristics in the Rhine River Basin are controlled by increased precipitation amounts on the one hand, and reduced snowmelt on the other hand. Rising temperatures deplete seasonal snowpacks. At no time during the year, a warming climate results in an increase in the risk of snowmelt-driven flooding. Counterbalancing effects between snowmelt and precipitation often result in only little and transient changes in streamflow peaks. Although, investigations point at changes in both rainfall and snowmelt-driven runoff, there are no indications of a transient merging of nival and pluvial Rhine flood regimes due to climate warming. Flooding in the main tributaries of the Rhine, such as the Moselle River, as well as the High Rhine is controlled by both precipitation and snowmelt. Caution has to be exercised labelling sub-basins such as the Moselle catchment as purely pluvial-type or the Rhine River Basin at Basel as purely nival-type. Results indicate that this (over-) simplifications can entail misleading assumptions with regard to flood-generating mechanisms and changes in flood hazard. In the framework of this thesis, some progress has been made in detecting, quantifying and attributing past, present and future changes in Rhine flow/flood characteristics. However, further studies are necessary to pin down future changes in the flood genesis of Rhine floods, particularly very rare events. N2 - Überflutungen durch Flusshochwasser stellen für zahlreiche Städte und Gemeinden auf der ganzen Welt eine große Gefahr dar. Die Detektion, Quantifizierung und Attribuierung sich verändernder Hochwassereigenschaften ist wichtig, um Änderungen in der Gefahrenlage zu bewerten und Anrainerstaaten die Möglichkeit zur Abschwächung und Anpassung an das Hochwasserrisiko zu geben. Der Rhein ist einer der großen Flüsse Europas und zahlreiche Städte liegen an seinen Ufern. Sich überlagernde Abflüsse aus den großen Zuflüssen prägen das komplexe Abflussregime des Rheins. Sowohl Regen, Schneeschmelze als auch Eisschmelze sind wichtige Abflusskomponenten. Vorrangiges Ziel dieser Arbeit ist die Untersuchung der Möglichkeit einer durch den Klimawandel verursachten vorübergehenden Überlagerung von nivalen und pluvial Hochwasserereignissen im Rheingebiet. Steigende Temperaturen können zu einer früheren Schneeschmelze und intensivieren Niederschlägen führen. Die Überlagerung von durch Schneeschmelze angetriebenen Spitzenabflüssen aus den Alpen mit intensiveren Hochwasserereignissen aus den pluvialen Zuflüssen, könnte zur Bildung eines neuen Hochwassertyps mit möglicherweise katastrophalen Folgen führen. Eine interaktive Web-Anwendung, die es ermöglicht, Zeitpunkt und Saisonalität von Abfluss auf der ganzen Welt zu untersuchen, führt in die Thematik sich verändernder hydrologischer Abflussregime ein. Die Untersuchungen und der Vergleich von unterschiedlichsten Abflusspegeln im Rheingebiet und darüber hinaus weißen darauf hin, dass sich Flusssysteme auf der ganzen Welt im Wandel befinden. In der Gefahren- und Risikoforschung ist die Bereitstellung von Hintergrundinformationen und Informationen zu aktuellen Entwicklungen für Anwohner und Entscheidungsträger auf leicht zugängliche Weise von großer Bedeutung. Zukünftige Studien sollten sich das Potential wissenschaftlicher Web-Anwendungen, um die Kommunikation in Bezug auf Naturgefahren und -risiken zu verbessern, verstärkt zu Nutze machen. Nächster Schritt ist die Entwicklung einer kaskadierenden Sequenz analytischer Methoden, um langfristige Änderungen in hydro-klimatoligischen Zeitreihen zu detektieren. Eine Kombination aus Quantil-Berechnungen, Statistiken basierend auf gleitenden Mittelwerten und empirischer Bandzerlegung ermöglicht die Extraktion hochaufgelöster Signale und die Identifizierungen zu Grunde liegender Antriebsmechanismen. Die Ergebnisse der Analysen zeigen, dass der Bau und Betrieb von großen Stauseen zur Gewinnung von Wasserkraft zu einer Umverteilung von Wasser vom Sommer in den Winter führt. Zudem weisen die Ergebnisse auf (mehr) intensivere Niederschläge hin, die wiederum hohe Abflussquantile intensivieren. Die Entwicklung und Anwendung der analytischen Sequenz stellt einen weiteren Schritt in dem wissenschaftlichen Bestreben, natürliche Klimavariabilität, Signale des Klimawandels und direkte anthropogene Einflüsse zu entwirren, dar. Die detaillierte Untersuchung von Schneemessungen und die Simulation der alpinen Schneedecke mittels physikalisch-basiertem Schneemodell, ermöglicht die Quantifizierung von Änderungen in der Schneeschmelze im Rheingebiet oberhalb von Basel. Steigenden Temperaturen verringern nicht nur hohe Schmelzraten, ein Dreifach-Effekt kann identifiziert werden: Schneeschmelze wird schwächer, findet früher statt und formiert sich in höhere Lagen. Auf Grund der großen Höhenunterschiede im Gebiet, findet die Schneeschmelze nicht gleichzeitig in allen Höhenlagen statt. Simulationen weisen darauf hin, dass Höhenbänder zusammen in Blöcken schmelzen. Der Beginn und das Ende eines Schmelzereignisses scheint durch vorbeiziehende warme Luftmassen und die betroffenen Höhenlagen durch zugehörige Temperaturen und die Schneeverfügbarkeit bestimmt zu werden. Basieren auf diesen Erkenntnissen, wird eine Hypothese, die höhenabhängige Kompensationseffekte in der Schneeschmelze beschreibt, vorgestellt: In einem wärmeren Klima mit einer gleichbleibenden Abfolge von Witterungsbedingungen, findet die Schneeschmelze in höheren Lagen statt, d.h., der Block an Höhenbändern, der den Hauptbestandteil des Schmelzwassers freigibt, ist nach oben verschoben. Die Verschiebung in höhere Lagen führt dazu, dass die Schneeschmelze in einzelnen Höhenbändern früher kommt, der Zeitpunkt des Schmelzereignisses jedoch unverändert bleibt. Schmelzwasser aus höheren Lagen ersetzt, zumindest teilweise, Schmelzwasser aus tieferen Lagen. Die Erkenntnisse über historische und gegenwärtige Änderungen im Abfluss, der Schneedecke und zu Grunde liegenden Mechanismen bilden die Grundlage der Untersuchungen möglicher zukünftiger Änderungen im Abfluss des Rheins. Das für die Mesoskala entwickelte hydrologisiche Modell mHM wird mit einem Ensemble aus Klimaszenarien angetrieben und projizierte Änderungen im Abfluss, der Schneeschmelze, im Niederschlag und der Evapotranspiration bei 1.5, 2.0 und 3.0 ◦ C Erwärmung untersucht. Ergebnisse der hydrologischen Simulationen zeigen, dass künftige Änderungen der Hochwassereigenschaften im Rheingebiet durch zunehmenden Niederschlagsmengen und abnehmende Schneeschmelze bestimmt werden. Steigende Temperaturen verringern saisonale Schneedecken. Zu keinem Zeitpunkt im Jahr führen höhere Temperaturen zu einer Zunahme des Hochwasserrisikos durch die Schneeschmelze. Kompensationseffekte zwischen Schneeschmelze und Niederschlag resultieren oftmals in geringe und nur vorübergehende Erhöhungen von Spitzenabflüssen. Obwohl Untersuchungen auf Veränderungen sowohl in der Schneeschmelze als auch im Niederschlag hinweisen, finden sich keine Hinweise auf eine durch den Klimawandel verursachte vorübergehende Überlagerung von nivalen und pluvialen Hochwasserregimen im Rheingebiet. Hochwasserereignisse in den Hauptzuflüssen, wie zu Beispiel der Mosel, und dem Hochrhein werden sowohl durch Niederschläge als auch Schneeschmelze kontrolliert. Vorsicht muss geübt werden, wenn Teilgebiete, wie das Einzugsgebiet der Mosel als rein pluvial oder das Rheingebiet oberhalb von Basel als rein nival gesehen werden. Die Ergebnisse zeigen, dass diese (zu starke) Vereinfachung zu irreführenden Annahmen bezüglich möglicher Änderungen von Hochwasser verursachender Mechanismen und Hochwassergefahr führen können. Diese Doktorarbeit ist ein Schritt vorwärts im wissenschaftlichen Streben die Detektion, Quantifizierung und Attribuierung vergangener und zukünftiger Veränderungen in den Abfluss- und Hochwasserregimen des Rheins zu verbessern. Weitere Untersuchungen sind nötig, um zukünftige Veränderungen in der Hochwassergenese sehr seltener Hochwasserereignisse einzuschätzen. KW - runoff seasonality KW - Rhine River KW - flooding KW - snowmelt KW - Abflusssaisonalität KW - Rhein KW - Hochwasser KW - Schneeschmelze Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517665 ER - TY - JOUR A1 - Riese, Miriam A1 - Thieken, Annegret A1 - Müggenburg, Eva A1 - Bubeck, Philip T1 - Synergies and barriers of the possible integration of heavy rainfall for the implementation of the European Floods Directive JF - Hydrologie und Wasserbewirtschaftung N2 - The heavy rainfall events in recent years have caused great damage, which has increased the public awareness of the topic of heavy rainfall. For this reason, this article discusses how a systematic integration of heavy rainfall within the framework of the European Floods Directive would be possible and reasonable. For this purpose, a matrix covering possible synergies and barriers was created for all steps of the directive, which were then examined in 15 semi-structured interviews with representatives from specialized administration, the private sector and academia. Although there are some synergies, the additional effort required, especially regarding the identification of the risk areas and the higher level of detail required for risk modeling, would be so high that the European Floods Directive cannot be deemed to be an appropriate framework for heavy rainfall risk management. Nevertheless, there is a need for action, e.g. in the field of self-protection, improved risk communication to the population, combined with increased public and interagency cooperation. T2 - Synergien und Hemmnisse einer möglichen Integration von Starkregen in die Bearbeitung der europäischen Hochwasserrisikomanagementrichtlinie KW - Flood KW - heavy rainfall KW - EU Floods Directive KW - Federal Water Act KW - Hochwasser KW - Starkregen KW - Hochwasserrisikomanagementrichtlinie KW - Wasserhaushaltsgesetz Y1 - 2019 U6 - https://doi.org/10.5675/HyWa_2019.4_1 SN - 1439-1783 VL - 63 IS - 4 SP - 193 EP - 202 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - THES A1 - Schröter, Kai T1 - Improved flood risk assessment BT - new data sources and methods for flood risk modelling N2 - Rivers have always flooded their floodplains. Over 2.5 billion people worldwide have been affected by flooding in recent decades. The economic damage is also considerable, averaging 100 billion US dollars per year. There is no doubt that damage and other negative effects of floods can be avoided. However, this has a price: financially and politically. Costs and benefits can be estimated through risk assessments. Questions about the location and frequency of floods, about the objects that could be affected and their vulnerability are of importance for flood risk managers, insurance companies and politicians. Thus, both variables and factors from the fields of hydrology and sociol-economics play a role with multi-layered connections. One example are dikes along a river, which on the one hand contain floods, but on the other hand, by narrowing the natural floodplains, accelerate the flood discharge and increase the danger of flooding for the residents downstream. Such larger connections must be included in the assessment of flood risk. However, in current procedures this is accompanied by simplifying assumptions. Risk assessments are therefore fuzzy and associated with uncertainties. This thesis investigates the benefits and possibilities of new data sources for improving flood risk assessment. New methods and models are developed, which take the mentioned interrelations better into account and also quantify the existing uncertainties of the model results, and thus enable statements about the reliability of risk estimates. For this purpose, data on flood events from various sources are collected and evaluated. This includes precipitation and flow records at measuring stations as well as for instance images from social media, which can help to delineate the flooded areas and estimate flood damage with location information. Machine learning methods have been successfully used to recognize and understand correlations between floods and impacts from a wide range of data and to develop improved models. Risk models help to develop and evaluate strategies to reduce flood risk. These tools also provide advanced insights into the interplay of various factors and on the expected consequences of flooding. This work shows progress in terms of an improved assessment of flood risks by using diverse data from different sources with innovative methods as well as by the further development of models. Flood risk is variable due to economic and climatic changes, and other drivers of risk. In order to keep the knowledge about flood risks up-to-date, robust, efficient and adaptable methods as proposed in this thesis are of increasing importance. N2 - Flüsse haben seit jeher ihre Auen überflutet. In den vergangenen Jahrzehnten waren weltweit über 2,5 Milliarden Menschen durch Hochwasser betroffen. Auch der ökonomische Schaden ist mit durchschnittlich 100 Milliarden US Dollar pro Jahr erheblich. Zweifelsohne können Schäden und andere negative Auswirkungen von Hochwasser vermieden werden. Allerdings hat dies einen Preis: finanziell und politisch. Kosten und Nutzen lassen sich durch Risikobewertungen abschätzen. Dabei werden in der Wasserwirtschaft, von Versicherungen und der Politik Fragen nach dem Ort und der Häufigkeit von Überflutungen, nach den Dingen, die betroffen sein könnten und deren Anfälligkeit untersucht. Somit spielen sowohl Größen und Faktoren aus den Bereichen der Hydrologie und Sozioökonmie mit vielschichtigen Zusammenhängen eine Rolle. Ein anschauliches Beispiel sind Deiche entlang eines Flusses, die einerseits in ihrem Abschnitt Überflutungen eindämmen, andererseits aber durch die Einengung der natürlichen Vorländer den Hochwasserabfluss beschleunigen und die Gefährdung für die Anlieger flussab verschärfen. Solche größeren Zusammenhänge müssen in der Bewertung des Hochwasserrisikos einbezogen werden. In derzeit gängigen Verfahren geht dies mit vereinfachenden Annahmen einher. Risikoabschätzungen sind daher unscharf und mit Unsicherheiten verbunden. Diese Arbeit untersucht den Nutzen und die Möglichkeiten neuer Datensätze für eine Verbesserung der Hochwasserrisikoabschätzung. Es werden neue Methoden und Modelle entwickelt, die die angesprochenen Zusammenhänge stärker berücksichtigen und auch die bestehenden Unsicherheiten der Modellergebnisse beziffern und somit die Verlässlichkeit der getroffenen Aussagen einordnen lassen. Dafür werden Daten zu Hochwasserereignissen aus verschiedenen Quellen erfasst und ausgewertet. Dazu zählen neben Niederschlags-und Durchflussaufzeichnungen an Messstationen beispielsweise auch Bilder aus sozialen Medien, die mit Ortsangaben und Bildinhalten helfen können, die Überflutungsflächen abzugrenzen und Hochwasserschäden zu schätzen. Verfahren des Maschinellen Lernens wurden erfolgreich eingesetzt, um aus vielfältigen Daten, Zusammenhänge zwischen Hochwasser und Auswirkungen zu erkennen, besser zu verstehen und verbesserte Modelle zu entwickeln. Solche Risikomodelle helfen bei der Entwicklung und Bewertung von Strategien zur Minderung des Hochwasserrisikos. Diese Werkzeuge ermöglichen darüber hinaus Einblicke in das Zusammenspiel verschiedener Faktoren sowie Aussagen zu den zu erwartenden Folgen auch von Hochwassern, die das bisher bekannte Ausmaß übersteigen. Diese Arbeit verzeichnet Fortschritte in Bezug auf eine verbesserte Bewertung von Hochwasserrisiken durch die Nutzung vielfältiger Daten aus unterschiedlichen Quellen mit innovativen Verfahren sowie der Weiterentwicklung von Modellen. Das Hochwasserrisiko unterliegt durch wirtschaftliche Entwicklungen und klimatische Veränderungen einem steten Wandel. Um das Wissen über Risiken aktuell zu halten sind robuste, leistungs- und anpassungsfähige Verfahren wie sie in dieser Arbeit vorgestellt werden von zunehmender Bedeutung. T2 - Verbesserte Hochwasserrisikobewertung: Neue Datenquellen und Methoden für die Risikomodellierung KW - flood KW - risk KW - vulnerability KW - machine learning KW - uncertainty KW - Hochwasser KW - Risiko KW - Vulnerabilität KW - Maschinelles Lernen KW - Unsicherheiten Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480240 ER - TY - THES A1 - Laudan, Jonas T1 - Changing susceptibility of flood-prone residents in Germany T1 - Die Änderung der Anfälligkeit von Hochwassergefährdeten Anwohnern in Deutschland BT - mental coping and mitigation behaviour in the context of different flood types BT - Mentale Bewältigung und Schadensminderungsverhalten im Zusammenhang mit Verschiedenen Hochwassertypen N2 - Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany. N2 - Hochwasser zählen zu den schadensträchtigsten Naturgefahren, die in Europa und Deutschland vorkommen. In Deutschland traten in den letzten Jahren einige sehr starke Hochwasser und Überflutungen auf, die die Einstufung von Hochwassern als gefährliche Naturgewalt bestätigten. Private Haushalte leiden unter finanziellen und persönlichen Verlusten und sind sogar teilweise mehrfach betroffen. Folgenreiche Hochwasser, die im Gedächtnis blieben, waren insbesondere das Elbe-Hochwasser im Sommer 2002 sowie Überschwemmungen mit Schwerpukten an Elbe und Donau im Juni 2013. Im Mai und Juni 2016 kam es zu heftigen Unwettern über Zentraleuropa, während insbesondere Süddeutschland von Starkregen und Sturzfluten betroffen war. Hierbei wurden vereinzelte Ortschaften in Baden-Württtemberg (vor allem Braunsbach) und Bayern (vor allem Simbach am Inn) von extremen Sturzfluten beeinträchtigt und Bauwerke stark beschädigt. Als Reaktion auf die Flusshochwasser 2002 und 2013 wurde unter anderem das aktuelle Hochwasserrisikomanagement in Deutschland so angepasst, dass neben übergeordneten und technischen Hochwasserschutzmaßnahmen auch auf lokaler Ebene Maßnahmen ergriffen werden müssen. Diese umfassen Hochwasservorsorgemaßnahmen, die betroffene Haushalte selbst implementieren sollen. Neben strukturellen Maßnahmen wie z.B. der Verlegung von Heizung, Elektronik und Öltank in nicht-gefährdete Stockwerke sowie dem Schutz des Gebäudes vor Eindringen von Wasser, können auch nichtstrukturelle Maßnahmen, wie z.B. eine angepasste Wohnraumnutzung und das Verwenden von geeigneter Inneneinrichtung, ergriffen werden, um Hochwasserschäden signifikant zu verringern. Bis heute ist es jedoch unklar, aus welchen Gründen sich die betroffenen Menschen für Hochwasservorsorgemaßnahmen entscheiden und wie die individuelle Motivation, Maßnahmen zu implementieren, verstärkt werden kann. Neben dem Wissen um die eigene Hochwassergefährdung ist anzunehmen, dass die Selbsteinschätzung in Bezug auf einen wirksamen Umgang mit Hochwassern ausschlaggebend für die Motivation zur Vorsorge ist. Außerdem kann davon ausgegangen werden, dass verschiedene Hochwassertypen wie Flusshochwasser und Sturzfluten mit ihren unterschiedlichen Dynamiken unterschiedliche Auswirkungen auf die mentale Bewältigung und somit auch auf das Vorsorgeverhalten hervorrufen. Die vorliegende Arbeit hat demnach zum Ziel, Flusshochwasser und Sturzfluten in Deutschland miteinander zu vergleichen, wobei der Fokus auf schadenstreibenden Faktoren und psychologischen Auswirkungen auf betroffene Haushalte liegt. Weiterhin sollen damit verbundenes Vorsorgeverhalten untersucht und gegebenenfalls Handlungsempfehlungen für das Hochwasserrisikomanagement abgeleitet werden, das einerseits psychologische Charakteristika und andererseits Sturzfluten als signifikante Naturgefahr in Deutschland miteinbezieht. Hierbei werden sozio-ökonomische, zwischenmenschliche und psychologische Variablen von Haushalten ausgewertet, die 2013 und 2016 von Flusshochwassern und Sturzfluten betroffen waren. Dabei kommen verschiedene Methoden (Regressionen, Bayessche Statistik) und Modelle (Protection Motivation Theory) zum Einsatz, um Verbindungen zwischen den Variablen aufzeigen. Die Ergebnisse veranschaulichen erstens, dass Flusshochwasser und Sturzfluten zwar unterschiedliche Schäden an Gebäuden aufgrund verschiedener Flutdynamiken hervorrufen können, was sich bei Betroffenen jedoch nicht in unterschiedlichen psychologischen Auswirkungen widerspiegelt. Vielmehr ist die jeweilige Stärke und Schwere des Hochwassers entscheidend für charakteristische Ausprägungen von psychologischen Variablen. In diesem Falle sorgt eine stärkere Flut dafür, dass häufiger an das jeweilige Ereignis gedacht wird, während die Motivation zur Eigenvorsorge in solchen Fällen erhöht scheint. Zweitens sind ein soziales Umfeld, in dem bereits Vorsorgemaßnahmen implementiert wurden, sowie hilfreiche Informationen für geeignete Maßnahmen, deren Kosten und Aufklärung über das aktuelle Hochwasserrisiko förderlich für die Motivation, private Vorsorge zu betreiben. Ein aktuelles Hochwasserrisikomanagement sollte demnach auch Sturzfluten als mögliches Risiko in Deutschland miteinbeziehen und mehr in die Aufklärung und private Unterstützung bei Hochwassern investieren. Ein besseres Verstehen von psychologischen und mentalen Auswirkungen von verschiedenen Hochwassertypen hat den Vorteil, dass Hilfe und Informationskampagnen individuell und effizient gestaltet, Schäden minimiert und Schadensprognosen aufgrund der genaueren Kenntnisse über Vorsorgeverhalten verbessert werden können. KW - floods KW - psychology KW - flash floods KW - Hochwasser KW - Psychologie KW - Sturzfluten Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434421 ER - TY - THES A1 - Nied, Manuela T1 - The role of soil moisture and weather patterns for flood occurrence and characteristics at the river basin scale T1 - Die Bedeutung von Mustern der Bodenfeuchte und des Wetters für das Auftreten und die Ausprägung von Hochwasserereignissen auf der Skala des Flusseinzugsgebietes N2 - Flood generation at the scale of large river basins is triggered by the interaction of the hydrological pre-conditions and the meteorological event conditions at different spatial and temporal scales. This interaction controls diverse flood generating processes and results in floods varying in magnitude and extent, duration as well as socio-economic consequences. For a process-based understanding of the underlying cause-effect relationships, systematic approaches are required. These approaches have to cover the complete causal flood chain, including the flood triggering meteorological event in combination with the hydrological (pre-)conditions in the catchment, runoff generation, flood routing, possible floodplain inundation and finally flood losses. In this thesis, a comprehensive probabilistic process-based understanding of the causes and effects of floods is advanced. The spatial and temporal dynamics of flood events as well as the geophysical processes involved in the causal flood chain are revealed and the systematic interconnections within the flood chain are deciphered by means of the classification of their associated causes and effects. This is achieved by investigating the role of the hydrological pre-conditions and the meteorological event conditions with respect to flood occurrence, flood processes and flood characteristics as well as their interconnections at the river basin scale. Broadening the knowledge about flood triggers, which up to now has been limited to linking large-scale meteorological conditions to flood occurrence, the influence of large-scale pre-event hydrological conditions on flood initiation is investigated. Using the Elbe River basin as an example, a classification of soil moisture, a key variable of pre-event conditions, is developed and a probabilistic link between patterns of soil moisture and flood occurrence is established. The soil moisture classification is applied to continuously simulated soil moisture data which is generated using the semi-distributed conceptual rainfall-runoff model SWIM. Applying successively a principal component analysis and a cluster analysis, days of similar soil moisture patterns are identified in the period November 1951 to October 2003. The investigation of flood triggers is complemented by including meteorological conditions described by a common weather pattern classification that represents the main modes of atmospheric state variability. The newly developed soil moisture classification thereby provides the basis to study the combined impact of hydrological pre-conditions and large-scale meteorological event conditions on flood occurrence at the river basin scale. A process-based understanding of flood generation and its associated probabilities is attained by classifying observed flood events into process-based flood types such as snowmelt floods or long-rain floods. Subsequently, the flood types are linked to the soil moisture and weather patterns. Further understanding of the processes is gained by modeling of the complete causal flood chain, incorporating a rainfall-runoff model, a 1D/2D hydrodynamic model and a flood loss model. A reshuffling approach based on weather patterns and the month of their occurrence is developed to generate synthetic data fields of meteorological conditions, which drive the model chain, in order to increase the flood sample size. From the large number of simulated flood events, the impact of hydro-meteorological conditions on various flood characteristics is detected through the analysis of conditional cumulative distribution functions and regression trees. The results show the existence of catchment-scale soil moisture patterns, which comprise of large-scale seasonal wetting and drying components as well as of smaller-scale variations related to spatially heterogeneous catchment processes. Soil moisture patterns frequently occurring before the onset of floods are identified. In winter, floods are initiated by catchment-wide high soil moisture, whereas in summer the flood-initiating soil moisture patterns are diverse and the soil moisture conditions are less stable in time. The combined study of both soil moisture and weather patterns shows that the flood favoring hydro-meteorological patterns as well as their interactions vary seasonally. In the analysis period, 18 % of the weather patterns only result in a flood in the case of preceding soil saturation. The classification of 82 past events into flood types reveals seasonally varying flood processes that can be linked to hydro-meteorological patterns. For instance, the highest flood potential for long-rain floods is associated with a weather pattern that is often detected in the presence of so-called ‘Vb’ cyclones. Rain-on-snow and snowmelt floods are associated with westerly and north-westerly wind directions. The flood characteristics vary among the flood types and can be reproduced by the applied model chain. In total, 5970 events are simulated. They reproduce the observed event characteristics between September 1957 and August 2002 and provide information on flood losses. A regression tree analysis relates the flood processes of the simulated events to the hydro-meteorological (pre-)event conditions and highlights the fact that flood magnitude is primarily controlled by the meteorological event, whereas flood extent is primarily controlled by the soil moisture conditions. Describing flood occurrence, processes and characteristics as a function of hydro-meteorological patterns, this thesis is part of a paradigm shift towards a process-based understanding of floods. The results highlight that soil moisture patterns as well as weather patterns are not only beneficial to a probabilistic conception of flood initiation but also provide information on the involved flood processes and the resulting flood characteristics. N2 - Hochwasserereignisse in großen Flusseinzugsgebieten entstehen durch das Zusammenwirken der hydrologischen Vorbedingungen und der meteorologischen Ereignisbedingungen. Das Zusammenwirken findet auf verschiedenen räumlichen und zeitlichen Skalen statt und steuert dabei unterschiedliche Prozesse der Hochwasserentstehung. Diese führen zu Hochwassern mit vielfältigen Eigenschaften, die sich unter anderem in maximalem Pegelstand, räumlicher Ausdehnung, Andauer und sozio-ökonomischen Folgen unterscheiden. Für ein prozessbasiertes Verständnis der zugrunde liegenden Zusammenhänge zwischen Ursache und Wirkung sind systematische Ansätze notwendig. Diese müssen die gesamte kausale Hochwasserprozesskette, von dem Hochwasser auslösenden meteorologischen Ereignis welches auf die hydrologischen Vorbedingungen im Einzugsgebiet trifft, über Abflussbildung, Wellenablauf und mögliche Überflutungen, bis hin zum Hochwasserschaden umfassen. Die vorliegende Arbeit hat das Ziel, zu einem umfassenden probabilistischen, prozessbasierten Verständnis der Ursachen und Auswirkungen von Hochwassern beizutragen. Neben der räumlichen und zeitlichen Dynamik von Hochwasserereignissen werden die an der kausalen Hochwasserprozesskette beteiligten geophysikalischen Prozesse analysiert. Systematische Zusammenhänge von Ursachen und Wirkungen innerhalb der Hochwasserprozesskette werden durch die Analyse von Klassifizierungen der hydrologischen Vorbedingungen und der meteorologischen Ereignisbedingungen offengelegt. Des Weiteren wird der Einfluss der klassifizierten Bedingungen bezüglich Hochwasserentstehung, Hochwasserprozessen und Hochwassereigenschaften sowie deren Verbindungen untereinander auf Ebene des Flusseinzugsgebiets quantifiziert. Das Wissen über hochwasserauslösende Bedingungen, welches bisher auf die Analyse von Großwetterlagen und deren Einfluss auf die Hochwasserentstehung beschränkt war, wird um den Einflussfaktor der großskaligen hydrologischen Vorbedingungen ergänzt. Am Beispiel des Einzugsgebiets der Elbe wird eine Klassifizierungsmethode für die Bodenfeuchte, einer bedeutenden hydrologischen Vorbedingung, entwickelt. Durch die Klassifizierung der Bodenfeuchte kann ein probabilistischer Zusammenhang zwischen räumlichen Bodenfeuchtemustern und dem Auftreten von Hochwasser hergestellt werden. Die Bodenfeuchteklassifizierung wird angewandt auf Bodenfeuchtedaten, die mit dem konzeptionellen Niederschlags-Abfluss-Modell SWIM durch kontinuierliche Simulation erzeugt werden. Eine Hauptkomponenten- und anschließende Clusteranalyse identifizieren dabei Tage ähnlicher räumlicher Bodenfeuchteverteilung im Zeitraum November 1951 bis Oktober 2003. Die meteorologischen Ereignisbedingungen werden durch eine gängige Wetterlagenklassifikation beschrieben, welche die charakteristischen atmosphärischen Zustände abbildet. Gemeinsam mit der neu entwickelten Bodenfeuchteklassifizierung bildet dies die Grundlage für die Untersuchung des kombinierten Einflusses der hydrologischen Vorbedingungen und der großräumigen meteorologischen Ereignisbedingungen auf die Entstehung von Hochwasser auf Flussgebietsskala. Das prozessorientierte Verständnis der Hochwasserentstehung und die damit einhergehenden Wahrscheinlichkeiten werden durch die Klassifizierung von vergangenen Hochwasserereignissen in prozessbasierte Hochwassertypen wie Schneeschmelzhochwasser oder Hochwasser auf Grund von langanhaltendendem Regen erzielt. Anschließend werden den Hochwassertypen die jeweils vorliegenden Bodenfeuchtemuster und Wetterlagen zugeordnet. Die Hochwasserprozesse werden zudem durch Simulation der gesamten kausalen Hochwasserprozesskette unter Einbeziehung eines Niederschlags-Abfluss-Modells, eines 1D/2D hydrodynamischen Modells sowie eines Hochwasserschadensmodells modelliert. Ein neu entwickelter Permutationsansatz basierend auf der Wetterlage und dem Monat ihres Auftretens generiert synthetische meteorologische Datensätze, welche der Modellkette als Eingangsdaten dienen, um eine repräsentative Anzahl von Hochwasserereignissen zu erzeugen. Durch die Vielzahl an simulierten Hochwasserereignissen kann der systematische Einfluss der hydro-meteorologischen Bedingungen auf verschiedene Hochwassermerkmale mit Hilfe von bedingten Verteilungsfunktionen und Regressionsbäumen gezeigt werden. Die Ergebnisse belegen die Existenz von Mustern der Bodenfeuchte auf Ebene von Flusseinzugsgebieten. Die Muster bilden sowohl großräumige jahreszeitliche Schwankungen der Bodenfeuchte als auch kleinskalige heterogene Prozesse im Einzugsgebiet ab. Häufig vor Hochwassern auftretende Bodenfeuchtemuster werden identifiziert. Im Winter wird Hochwasser vornehmlich durch eine flächendeckend hohe Bodenfeuchte eingeleitet. Im Sommer sind die Bodenfeuchtemuster zeitlich variabler und die mit Hochwasser in Verbindung stehenden Muster zahlreicher. Die Ergänzung der Bodenfeuchtemuster um die Wetterlagenklassifikation zeigt für die Hochwasserentstehung, dass die Beiträge der einzelnen hydro-meteorologischen Muster sowie deren Zusammenwirken jahreszeitlich variieren. Im Untersuchungszeitraum resultieren 18 % der Wetterlagen nur bei vorangehender Bodensättigung in einem Hochwasser. Die Zuordnung von 82 Hochwasserereignissen zu prozess-basierten Hochwassertypen zeigt ebenfalls saisonal unterschiedliche Prozesse auf, welche mit den hydro-meteorologischen Mustern in Verbindung gebracht werden können. Beispielsweise ist das größte Hochwasserpotenzial auf Grund von langanhaltendem Regen auf eine Wetterlage zurückzuführen, die häufig in Gegenwart von sogenannten "Vb" Zyklonen beobachtet wird. Regen-auf-Schnee und Schneeschmelz-Ereignisse werden im Zusammenhang mit westlichen und nordwestlichen Windrichtungen beobachtet. Die prozessbasierten Hochwassertypen und die resultierenden Hochwassereigenschaften können durch die angewandte Modellkette wiedergegeben werden. Insgesamt werden 5970 Ereignisse simuliert, welche die beobachteten Hochwassereigenschaften zwischen September 1957 und August 2002 reproduzieren. Zusätzlich können durch die Modellkette auch Aussagen über auftretende Hochwasserschäden gemacht werden. Eine Regressionsbaum-Analyse setzt die Hochwasserprozesse der simulierten Ereignisse in Beziehung zu den hydro-meteorologischen Bedingungen. Dabei wird deutlich, dass der Pegelstand primär durch die meteorologischen Ereignisbedingungen bestimmt wird, wohingegen die räumliche Ausdehnung des Hochwassers primär durch die Bodenfeuchtebedingungen beeinflusst wird. Die vorliegende Arbeit ist Teil eines Paradigmenwechsels hin zu einem prozessbasierten Hochwasserverständnis. Die Beschreibung von Hochwasserentstehung, Hochwasserprozessen und Hochwassereigenschaften in Abhängigkeit von hydro-meteorologischen Mustern zeigt, dass Bodenfeuchtemuster sowie Wetterlagen nicht nur zu einer probabilistischen Analyse der Hochwasserentstehung beitragen, sondern auch Aufschluss über die ablaufenden Hochwasserprozesse und die daraus resultierenden Hochwassereigenschaften geben. KW - floods KW - antecedent conditions KW - soil moisture patterns KW - weather patterns KW - flood types KW - Hochwasser KW - hydrologische Vorbedingungen KW - Muster der Bodenfeuchte KW - Wetterlagen KW - Hochwassertypen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94612 ER - TY - THES A1 - Aich, Valentin T1 - Floods in the Niger River Basin in the face of global change T1 - Hochwasser im Niger Einzugsgebiet im Kontext des Globalen Wandels BT - analysis, attribution and projections BT - Analyse, Zuschreibung und Projektionen N2 - In the last decade, the number and dimensions of catastrophic flooding events in the Niger River Basin (NRB) have markedly increased. Despite the devastating impact of the floods on the population and the mainly agriculturally based economy of the riverine nations, awareness of the hazards in policy and science is still low. The urgency of this topic and the existing research deficits are the motivation for the present dissertation. The thesis is an initial detailed assessment of the increasing flood risk in the NRB. The research strategy is based on four questions regarding (1) features of the change in flood risk, (2) reasons for the change in the flood regime, (3) expected changes of the flood regime given climate and land use changes, and (4) recommendations from previous analysis for reducing the flood risk in the NRB. The question examining the features of change in the flood regime is answered by means of statistical analysis. Trend, correlation, changepoint, and variance analyses show that, in addition to the factors exposure and vulnerability, the hazard itself has also increased significantly in the NRB, in accordance with the decadal climate pattern of West Africa. The northern arid and semi-arid parts of the NRB are those most affected by the changes. As potential reasons for the increase in flood magnitudes, climate and land use changes are attributed by means of a hypothesis-testing framework. Two different approaches, based on either data analysis or simulation, lead to similar results, showing that the influence of climatic changes is generally larger compared to that of land use changes. Only in the dry areas of the NRB is the influence of land use changes comparable to that of climatic alterations. Future changes of the flood regime are evaluated using modelling results. First ensembles of statistically and dynamically downscaled climate models based on different emission scenarios are analyzed. The models agree with a distinct increase in temperature. The precipitation signal, however, is not coherent. The climate scenarios are used to drive an eco-hydrological model. The influence of climatic changes on the flood regime is uncertain due to the unclear precipitation signal. Still, in general, higher flood peaks are expected. In a next step, effects of land use changes are integrated into the model. Different scenarios show that regreening might help to reduce flood peaks. In contrast, an expansion of agriculture might enhance the flood peaks in the NRB. Similarly to the analysis of observed changes in the flood regime, the impacts of climate- and land use changes for the future scenarios are also most severe in the dry areas of the NRB. In order to answer the final research question, the results of the above analysis are integrated into a range of recommendations for science and policy on how to reduce flood risk in the NRB. The main recommendations include a stronger consideration of the enormous natural climate variability in the NRB and a focus on so called “no-regret” adaptation strategies which account for high uncertainty, as well as a stronger consideration of regional differences. Regarding the prevention and mitigation of catastrophic flooding, the most vulnerable and sensitive areas in the basin, the arid and semi-arid Sahelian and Sudano-Sahelian regions, should be prioritized. Eventually, an active, science-based and science-guided flood policy is recommended. The enormous population growth in the NRB in connection with the expected deterioration of environmental and climatic conditions is likely to enhance the region´s vulnerability to flooding. A smart and sustainable flood policy can help mitigate these negative impacts of flooding on the development of riverine societies in West Africa. N2 - Während des vergangenen Jahrzehnts nahmen die Anzahl und die Ausmaße von katastrophalen Hochwassern im Einzugsgebiet des Nigerflussess (NEZG) deutlich zu. Trotz der verheerenden Auswirkungen der Hochwasserkatastrophen auf die Menschen und die hauptsächlich auf Landwirtschaft basierende Wirtschaft der Anrainerstaaten wird das Thema von Politik und Wissenschaft noch kaum beachtet. Die vorliegende Dissertation ist die erste ausführliche Analyse des steigenden Hochwasserrisikos im NEZG. Die Forschungsstrategie basiert auf vier Fragen nach (1) der Art der Veränderungen des Hochwasserrisikos, (2) den Ursachen der Veränderungen im Hochwasserregime, (3) den zukünftigen Entwicklungen im Hochwasserregime hinsichtlich der erwartenden Klima- und Landnutzungswandel und (4) den aus den Untersuchungen abgeleiteten Empfehlungen zur Reduzierung des Hochwasserrisikos im NEZG. Die Frage nach den Merkmalen der Veränderungen im Hochwasserrisiko wurde mithilfe von statistischen Untersuchungen beantwortet. Die Analysen zeigen, dass neben den Risikofaktoren Exponiertheit und Verwundbarkeit auch die Hochwasserstände selbst im NEZG in den letzten Jahrzehnten signifikant und entsprechend der typischen dekadischen Klimamuster Westafrikas angestiegen sind. Als potentielle Ursachen des Hochwasseranstiegs werden Klima- und Landnutzungswandel untersucht. Zwei verschiedene Ansätze, basierend auf Daten sowie auf Simulationen, führen zu ähnlichen Ergebnissen und zeigen, dass der Einfluss der Klimaveränderungen im Allgemeinen größer als der des Landnutzungswandels ist. Das zukünftige Hochwasserrisiko wird anhand des öko-hydrologisches Modells SWIM abgeschätzt. Der Einfluss des Klimawandels auf das Hochwasserregime ist auf Grund des problematischen Niederschlagssignals unsicher. Tendenziell werden aber höhere Maximalabflüsse erwartet. Der Effekt der Landnutzungsänderung beeinflusst das Hochwasserverhalten ebenfalls stark, besonders in den trockenen Gebieten. Verschiedene Szenarien zeigen, dass Renaturierung hülfe, Hochwasserspitzen zu kappen. Eine Ausweitung der Agrarflächen dagegen würde die Hochwässer im NEZG weiter verstärken Zentrale Empfehlungen sind eine stärkere Einbeziehung der enorm starken natürlichen Klimavariabilität im NEZG und eine Fokussierung auf sogenannte „no-regret“ Anpassungsstrategien. Dabei sollte den verwundbarsten Regionen des Einzugsgebiets, den ariden und semi-ariden Regionen, Priorität eingeräumt werden. Die enorme Bevölkerungszunahme im NEZG verbunden mit der zu erwartenden Verschlechterung der Umwelt- und Klimabedingungen wird mit hoher Wahrscheinlichkeit auch die Verwundbarkeit bezüglich Hochwässer weiter ansteigen lassen. Eine vernünftige und nachhaltige Hochwasserpolitik kann helfen, die negativen Folgen auf die Entwicklung der Anrainerstaaten des Nigerflusses abzumindern. KW - flood KW - Niger KW - climate change KW - land use change KW - Hochwasser KW - Niger KW - Klimawandel KW - Landnutzungswandel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91577 ER - TY - THES A1 - Vogel, Kristin T1 - Applications of Bayesian networks in natural hazard assessments T1 - Anwendungen von Bayes'schen Netzen bei der Einschätzung von Naturgefahren N2 - Even though quite different in occurrence and consequences, from a modeling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding: uncertainty about the modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings, it treats response variables as well as explanatory variables as random variables making no difference between input and output variables. Using a graphical representation Bayesian networks encode the dependency relations between the variables in a directed acyclic graph: variables are represented as nodes and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution of all variables can thus be described by decomposing it, according to the depicted independences, into a product of local conditional probability distributions, which are defined by the parameters of the Bayesian network. In the framework of this thesis the Bayesian network approach is applied to different natural hazard domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure and parameters from data, Bayesian networks reveal relevant dependency relations between the included variables and help to gain knowledge about the underlying processes. The problem of Bayesian network learning is cast in a Bayesian framework, considering the network structure and parameters as random variables itself and searching for the most likely combination of both, which corresponds to the maximum a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in theory the learning of Bayesian networks based on real-world data is usually not straight forward and requires an adoption of existing algorithms. Typically arising problems are the handling of continuous variables, incomplete observations and the interaction of both. Working with continuous distributions requires assumptions about the allowed families of distributions. To "let the data speak" and avoid wrong assumptions, continuous variables are instead discretized here, thus allowing for a completely data-driven and distribution-free learning. An extension of the MAP score, considering the discretization as random variable as well, is developed for an automatic multivariate discretization, that takes interactions between the variables into account. The discretization process is nested into the network learning and requires several iterations. Having to face incomplete observations on top, this may pose a computational burden. Iterative proceedings for missing value estimation become quickly infeasible. A more efficient albeit approximate method is used instead, estimating the missing values based only on the observations of variables directly interacting with the missing variable. Moreover natural hazard assessments often have a primary interest in a certain target variable. The discretization learned for this variable does not always have the required resolution for a good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved with continuous approximations subsequent to the Bayesian network learning, using kernel density estimations or mixtures of truncated exponential functions. All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowledge and instead provide domain independent solutions, that are applicable not only in other natural hazard assessments, but in a variety of domains struggling with uncertainties. N2 - Obwohl Naturgefahren in ihren Ursachen, Erscheinungen und Auswirkungen grundlegend verschieden sind, teilen sie doch viele Gemeinsamkeiten und Herausforderungen, wenn es um ihre Modellierung geht. Fehlendes Wissen über die zugrunde liegenden Kräfte und deren komplexes Zusammenwirken erschweren die Wahl einer geeigneten Modellstruktur. Hinzu kommen ungenaue und unvollständige Beobachtungsdaten sowie dem Naturereignis innewohnende Zufallsprozesse. All diese verschiedenen, miteinander interagierende Aspekte von Unsicherheit erfordern eine sorgfältige Betrachtung, um fehlerhafte und verharmlosende Einschätzungen von Naturgefahren zu vermeiden. Dennoch sind deterministische Vorgehensweisen in Gefährdungsanalysen weit verbreitet. Bayessche Netze betrachten die Probleme aus wahrscheinlichkeitstheoretischer Sicht und bieten somit eine sinnvolle Alternative zu deterministischen Verfahren. Alle vom Zufall beeinflussten Größen werden hierbei als Zufallsvariablen angesehen. Die gemeinsame Wahrscheinlichkeitsverteilung aller Variablen beschreibt das Zusammenwirken der verschiedenen Einflussgrößen und die zugehörige Unsicherheit/Zufälligkeit. Die Abhängigkeitsstrukturen der Variablen können durch eine grafische Darstellung abgebildet werden. Die Variablen werden dabei als Knoten in einem Graphen/Netzwerk dargestellt und die (Un-)Abhängigkeiten zwischen den Variablen als (fehlende) Verbindungen zwischen diesen Knoten. Die dargestellten Unabhängigkeiten veranschaulichen, wie sich die gemeinsame Wahrscheinlichkeitsverteilung in ein Produkt lokaler, bedingter Wahrscheinlichkeitsverteilungen zerlegen lässt. Im Verlauf dieser Arbeit werden verschiedene Naturgefahren (Erdbeben, Hochwasser und Bergstürze) betrachtet und mit Bayesschen Netzen modelliert. Dazu wird jeweils nach der Netzwerkstruktur gesucht, welche die Abhängigkeiten der Variablen am besten beschreibt. Außerdem werden die Parameter der lokalen, bedingten Wahrscheinlichkeitsverteilungen geschätzt, um das Bayessche Netz und dessen zugehörige gemeinsame Wahrscheinlichkeitsverteilung vollständig zu bestimmen. Die Definition des Bayesschen Netzes kann auf Grundlage von Expertenwissen erfolgen oder - so wie in dieser Arbeit - anhand von Beobachtungsdaten des zu untersuchenden Naturereignisses. Die hier verwendeten Methoden wählen Netzwerkstruktur und Parameter so, dass die daraus resultierende Wahrscheinlichkeitsverteilung den beobachteten Daten eine möglichst große Wahrscheinlichkeit zuspricht. Da dieses Vorgehen keine Expertenwissen voraussetzt, ist es universell in verschiedenen Gebieten der Gefährdungsanalyse einsetzbar. Trotz umfangreicher Forschung zu diesem Thema ist das Bestimmen von Bayesschen Netzen basierend auf Beobachtungsdaten nicht ohne Schwierigkeiten. Typische Herausforderungen stellen die Handhabung stetiger Variablen und unvollständiger Datensätze dar. Beide Probleme werden in dieser Arbeit behandelt. Es werden Lösungsansätze entwickelt und in den Anwendungsbeispielen eingesetzt. Eine Kernfrage ist hierbei die Komplexität des Algorithmus. Besonders wenn sowohl stetige Variablen als auch unvollständige Datensätze in Kombination auftreten, sind effizient arbeitende Verfahren gefragt. Die hierzu in dieser Arbeit entwickelten Methoden ermöglichen die Verarbeitung von großen Datensätze mit stetigen Variablen und unvollständigen Beobachtungen und leisten damit einen wichtigen Beitrag für die wahrscheinlichkeitstheoretische Gefährdungsanalyse. KW - Bayes'sche Netze KW - Naturgefahren KW - Gefahrenanalyse KW - Unsicherheiten KW - Hochwasser KW - Bayesian networks KW - natural hazards KW - hazard assessments KW - uncertainties KW - flood events Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69777 ER - TY - THES A1 - Uhlemann, Steffi T1 - Understanding trans-basin floods in Germany : data, information and knowledge T1 - Flussgebietsübergreifende Hochwasserereignisse in Deutschland : Daten, Informationen und Wissen. N2 - Large Central European flood events of the past have demonstrated that flooding can affect several river basins at the same time leading to catastrophic economic and humanitarian losses that can stretch emergency resources beyond planned levels of service. For Germany, the spatial coherence of flooding, the contributing processes and the role of trans-basin floods for a national risk assessment is largely unknown and analysis is limited by a lack of systematic data, information and knowledge on past events. This study investigates the frequency and intensity of trans-basin flood events in Germany. It evaluates the data and information basis on which knowledge about trans-basin floods can be generated in order to improve any future flood risk assessment. In particu-lar, the study assesses whether flood documentations and related reports can provide a valuable data source for understanding trans-basin floods. An adaptive algorithm was developed that systematically captures trans-basin floods using series of mean daily discharge at a large number of sites of even time series length (1952-2002). It identifies the simultaneous occurrence of flood peaks based on the exceedance of an initial threshold of a 10 year flood at one location and consecutively pools all causally related, spatially and temporally lagged peak recordings at the other locations. A weighted cumulative index was developed that accounts for the spatial extent and the individual flood magnitudes within an event and allows quantifying the overall event severity. The parameters of the method were tested in a sensitivity analysis. An intensive study on sources and ways of information dissemination of flood-relevant publications in Germany was conducted. Based on the method of systematic reviews a strategic search approach was developed to identify relevant documentations for each of the 40 strongest trans-basin flood events. A novel framework for assessing the quality of event specific flood reports from a user’s perspective was developed and validated by independent peers. The framework was designed to be generally applicable for any natural hazard type and assesses the quality of a document addressing accessibility as well as representational, contextual, and intrinsic dimensions of quality. The analysis of time-series of mean daily discharge resulted in the identification of 80 trans-basin flood events within the period 1952-2002 in Germany. The set is dominated by events that were recorded in the hydrological winter (64%); 36% occurred during the summer months. The occurrence of floods is characterised by a distinct clustering in time. Dividing the study period into two sub-periods, we find an increase in the percentage of winter events from 58% in the first to 70.5% in the second sub-period. Accordingly, we find a significant increase in the number of extreme trans-basin floods in the second sub-period. A large body of 186 flood relevant documentations was identified. For 87.5% of the 40 strongest trans-basin floods in Germany at least one report has been found and for the most severe floods a substantial amount of documentation could be obtained. 80% of the material can be considered grey literature (i.e. literature not controlled by commercial publishers). The results of the quality assessment show that the majority of flood event specific reports are of a good quality, i.e. they are well enough drafted, largely accurate and objective, and contain a substantial amount of information on the sources, pathways and receptors/consequences of the floods. The inclusion of this information in the process of knowledge building for flood risk assessment is recommended. Both the results as well as the data produced in this study are openly accessible and can be used for further research. The results of this study contribute to an improved spatial risk assessment in Germany. The identified set of trans-basin floods provides the basis for an assessment of the chance that flooding occurs simultaneously at a number of sites. The information obtained from flood event documentation can usefully supplement the analysis of the processes that govern flood risk. N2 - Abschätzungen zum Hochwasserrisiko beschränken sich zumeist auf die Analyse innerhalb eines Einzugsgebietes bzw. eines bestimmten Ortes. Die Zusammenhänge in größeren Regionen und vor allem Korrelationen zwischen verschiedenen Einzugsgebieten werden nur selten betrachtet. Solche einzugsgebietsübergreifenden Analysen sind jedoch sowohl für die Versicherungswirtschaft, den Katastrophenschutz sowie für großräumige strategische Hochwasserplanungen notwendig. Allerdings stehen nur für eine geringe Auswahl historischer Ereignisse Daten zur Verfügung und systematische Ansätze zu ihrer Erfassung wurden für Deutschland bisher nicht entwickelt. Die vorliegende Studie untersucht zum ersten die Häufigkeit und Intensität von flussgebietsübergreifenden Hochwasserereignissen in Deutschland anhand von gemessenen Abflüssen an einer Vielzahl von Stationen. Es können insgesamt 80 Hochwasserereignisse in Deutschland im Zeitraum von 1952-2002 nachgewiesen werden. Davon treten die meisten Ereignissen im hydrologischen Winterhalbjahr auf (64%). Wir können nachweisen, dass die Häufigkeit des Auftretens in verschiedenen Perioden unterschiedlich ist, und dass im Untersuchungszeitraum eine signifikante Zunahme von Winterereignissen und damit vor allem von sehr schweren flussgebietsübergreifenden Hochwasserereignissen zu verzeichnen ist. Die Studie hatte des Weiteren zum Ziel, die verfügbare Daten- und Informationsgrundlage zur Hochwasseranalyse zu erkunden. Im speziellen wird untersucht, inwieweit Hochwasserereignisdokumentationen und verwandte Berichte als eine weitere Datenquelle für ein verbessertes Prozessverständnis genutzt werden können. Im Rahmen einer systematischen Suche konnten für die 40 größten Hochwasserereignisse in Deutschland 186 relevante Berichte identifiziert werden. 80% des Materials kann als Grauliteratur eingestuft werden, d.h. als Veröffentlichungen welche nicht durch kommerzielle Verleger publiziert wird. Die sich daraus ergebende Frage nach der Qualität der Dokumente und ihres Informationsgehaltes wurde durch die Entwicklung und Anwendung eines Qualitätsbewertungsschemas beantwortet. Die Ergebnisse der Qualitätsbewertung zeigen, dass die Mehrheit der ereignisspezifischen Hochwasserberichte von guter Qualität ist, d.h. die Berichte sind in ausreichender Qualität verfasst, größtenteils korrekt und objektiv und beinhalten eine substantielle Menge an Informationen zu den Ursachen, Verläufen, betroffenen Objekten und Schäden eines Ereignisses. Es wird empfohlen diese Informationen in die Wissenssynthese für die Hochwasserrisikobewertung einfließen zu lassen. Sowohl Ergebnisse als auch Daten dieser Studie sind so publiziert, dass sie öffentlich zugänglich sind und für weitere Forschungsfragen genutzt werden können. KW - Hochwasser KW - Deutschland KW - Grauliteratur KW - Ereignisdokumentation KW - Qualitätsbewertung KW - floods KW - Germany KW - grey literature KW - event documentation KW - quality assessment framework Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68868 ER - TY - THES A1 - Petrow, Theresia T1 - Floods in Germany : analyses of trends, seasonality and circulation patterns T1 - Hochwasser in Deutschland : Untersuchungen zu Trends, Saisonalität und Großwetterlagen N2 - Flood hazard estimations are conducted with a variety of methods. These include flood frequency analysis (FFA), hydrologic and hydraulic modelling, probable maximum discharges as well as climate scenarios. However, most of these methods assume stationarity of the used time series, i.e., the series must not exhibit trends. Against the background of climate change and proven significant trends in atmospheric circulation patterns, it is questionable whether these changes are also reflected in the discharge data. The aim of this PhD thesis is therefore to clarify, in a spatially-explicit manner, whether the available discharge data derived from selected German catchments exhibit trends. Concerning the flood hazard, the suitability of the currently used stationary FFA approaches is evaluated for the discharge data. Moreover, dynamics in atmospheric circulation patterns are studied and the link between trends in these patterns and discharges is investigated. To tackle this research topic, a number of different analyses are conducted. The first part of the PhD thesis comprises the study and trend test of 145 discharge series from catchments, which cover most of Germany for the period 1951–2002. The seasonality and trend pattern of eight flood indicators, such as maximum series and peak-over-threshold series, are analyzed in a spatially-explicit manner. Analyses are performed on different spatial scales: at the local scale, through gauge-specific analyses, and on the catchment-wide and basin scales. Besides the analysis of discharge series, data on atmospheric circulation patterns (CP) are an important source of information, upon which conclusions about the flood hazard can be drawn. The analyses of these circulation patterns (after Hess und Brezowsky) and the study of the link to peak discharges form the second part of the thesis. For this, daily data on the dominant CP across Europe are studied; these are represented by different indicators, which are tested for trend. Moreover, analyses are performed to extract flood triggering circulation patterns and to estimate the flood potential of CPs. Correlations between discharge series and CP indicators are calculated to assess a possible link between them. For this research topic, data from 122 meso-scale catchments in the period 1951–2002 are used. In a third part, the Mulde catchment, a mesoscale sub-catchment of the Elbe basin, is studied in more detail. Fifteen discharge series of different lengths in the period 1910–2002 are available for the seasonally differentiated analysis of the flood potential of CPs and flood influencing landscape parameters. For trend tests of discharge and CP data, different methods are used. The Mann-Kendall test is applied with a significance level of 10%, ensuring statistically sound results. Besides the test of the entire series for trend, multiple time-varying trend tests are performed with the help of a resampling approach in order to better differentiate short-term fluctuations from long-lasting trends. Calculations of the field significance complement the flood hazard assessment for the studied regions. The present thesis shows that the flood hazard is indeed significantly increasing for selected regions in Germany during the winter season. Especially affected are the middle mountain ranges in Central Germany. This increase of the flood hazard is attributed to a longer persistence of selected CPs during winter. Increasing trends in summer floods are found in the Rhine and Danube catchments, decreasing trends in the Elbe and Weser catchments. Finally, a significant trend towards a reduced diversity of CPs is found causing fewer patterns with longer persistence to dominate the weather over Europe. The detailed study of the Mulde catchment reveals a flood regime with frequent low winter floods and fewer summer floods, which bear, however, the potential of becoming extreme. Based on the results, the use of instationary approaches for flood hazard estimation is recommended in order to account for the detected trends in many of the series. Through this methodology it is possible to directly consider temporal changes in flood series, which in turn reduces the possibility of large under- or overestimations of the extreme discharges, respectively. N2 - Hochwasserabschätzungen werden mit Hilfe einer Vielzahl von Methoden ermittelt. Zu diesen zählen Hochwasserhäufigkeitsanalysen, die hydrologische und hydraulische Modellierung, Abschätzungen zu maximal möglichen Abflüssen wie auch Langzeitstudien und Klimaszenarien. Den meisten Methoden ist jedoch gemein, dass sie stationäre Bedingungen der beobachteten Abflussdaten annehmen. Das heißt, in den genutzten Zeitreihen dürfen keine Trends vorliegen. Vor dem Hintergrund des Klimawandels und nachgewiesener Trends in atmosphärischen Zirkulationsmustern, stellt sich jedoch die Frage, ob sich diese Veränderungen nicht auch in den Abflussdaten widerspiegeln. Ziel der Dissertation ist daher die Überprüfung der Annahme von Trendfreiheit in Abflüssen und Großwetterlagen, um zu klären, ob die aktuell genutzten stationären Verfahren zur Hochwasserbemessung für die vorhandenen Daten in Deutschland geeignet sind. Zu prüfen ist des Weiteren, inwiefern regional und saisonal eine Verschärfung bzw. Abschwächung der Hochwassergefahr beobachtet werden kann und ob eindeutige Korrelationen zwischen Abflüssen und Großwetterlagen bestehen. Den ersten Schwerpunkt der vorliegenden Dissertation bildet die deutschlandweite Analyse von 145 Abflusszeitreihen für den Zeitraum 1951–2002. Acht Hochwasserindikatoren, die verschiedene Aspekte der Hochwasser-Charakteristik beleuchten, werden analysiert und bezüglich möglicher Trends getestet. Um saisonalen Unterschieden in der Hochwassercharakteristik der einzelnen Regionen gerecht zu werden, werden neben jährlichen auch saisonale Reihen untersucht. Die Analyse von Maximalreihen wird durch Schwellenwertanalysen ergänzt, die die Hochwasserdynamik bzgl. Frequenz und Magnitude detaillierter erfassen. Die Daten werden auf verschiedenen Skalen untersucht: sowohl für jeden einzelnen Pegel wie auch für ganze Regionen und Einzugsgebiete. Nicht nur die Analyse der Abflussdaten bietet die Möglichkeit, Bewertungen für die zukünftige Hochwasserabschätzung abzuleiten. Auch Großwetterlagen bilden eine bedeutende Informationsquelle über die Hochwassergefahr, da in der Regel nur ausgewählte Zirkulationsmuster die Entstehung von Hochwasser begünstigen. Die saisonal differenzierte Untersuchung der Großwetterlagen und die Prüfung einer Korrelation zu den Abflüssen an 122 mesoskaligen Einzugsgebieten bilden deshalb den zweiten Schwerpunkt der Arbeit. Hierzu werden tägliche Daten der über Europa dominierenden Großwetterlage (nach Hess und Brezowsky) mit Hilfe verschiedener Indikatoren untersucht. Analysen zum Hochwasserpotential der einzelnen Wetterlagen und weiterer Einflussfaktoren werden für das mesoskalige Einzugsgebiet der Mulde in einer separaten Studie durchgeführt. Für diese Detail-Studie stehen 15 Abflusszeitreihen verschiedener Länge im Zeitraum 1909–2002 zur Verfügung. Um die Daten von Abflüssen und Großwetterlagen bezüglich vorhandener Trends zu testen, werden verschiedene Methoden genutzt. Der Mann-Kendall Test wird mit einem Signifikanzniveau von 10% (zweiseitiger Test) angewendet, was statistisch sichere Bewertungen ermöglicht. Neben der Prüfung der gesamten Datenreihe werden multiple zeitlich-variable Trendanalysen mit Hilfe eines Resampling-Ansatzes durchgeführt. Darüber hinaus werden räumlich differenzierte Analysen durchgeführt, um die saisonale Hochwassercharakteristik einzelner Regionen besser zu verstehen. Diese werden durch Tests zur Feldsignifikanz der Trends ergänzt. Mit der vorliegenden Arbeit kann gezeigt werden, dass die Hochwassergefahr für einzelne Regionen im Winterhalbjahr signifikant steigt. Davon sind insbesondere Gebiete in Mitteldeutschland betroffen. Die Verschärfung der Hochwassergefahr durch eine längere Persistenz ausgewählter Großwetterlagen konnte ebenfalls für das Winterhalbjahr nachgewiesen werden. Sommerhochwasser zeigen zwar ebenfalls steigende, aber auch fallende Trends, die räumlich geclustert sind. Im Elbe- und Weser-Einzugsgebiet sinken die Abflüsse signifikant, im Donau- und Rheineinzugsgebiet steigen sie nachweisbar. Darüber hinaus ist eine signifikante Abnahme der Anzahl verschiedener Großwetterlagen sowohl im Sommer als auch im Winter zu verzeichnen. Bzgl. der Studie zum Mulde-Einzugsgebiet konnte ein zweigeteiltes Hochwasserregime nachgewiesen werden. In den Wintermonaten treten häufig kleine Hochwasser auf, die auch die Mehrheit der jährlichen Maximalwerte bilden. Sommerhochwasser sind seltener, können aber extreme Ausmaße annehmen. Ein Vergleich der geschätzten Jährlichkeiten mit verschiedenen Zeitreihen zeigt die Notwendigkeit der Berücksichtigung saisonaler Aspekte für die Bemessung von Hochwassern. Aufgrund der Ergebnisse müssen die bisher genutzten stationären Verfahren als nicht mehr geeignet bewertet werden. Es wird daher die Nutzung instationärer Verfahren zur Abschätzung von Extremhochwasser und der damit verbundenen Bemessung von Schutzmaßnahmen empfohlen, um den teilweise vorliegenden Trends in den Daten Rechnung zu tragen. Durch diesen Ansatz ist es möglich, zeitlich dynamische Veränderungen im Hochwassergeschehen stärker zu berücksichtigen. Darüber hinaus sollten saisonale Aspekte des Einzugsgebietes Eingang in die Gefahrenabschätzung finden. KW - Hochwasser KW - Deutschland KW - Saisonalität KW - Großwetterlage KW - Trends KW - floods KW - Germany KW - trends KW - circulation patterns KW - seasonality Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-37392 ER - TY - THES A1 - Vorogushyn, Sergiy T1 - Analysis of flood hazard under consideration of dike breaches T1 - Analyse der Hochwassergefährdung unter Berücksichtigung von Deichbrüchen N2 - River reaches protected by dikes exhibit high damage potential due to strong value accumulation in the hinterland areas. While providing an efficient protection against low magnitude flood events, dikes may fail under the load of extreme water levels and long flood durations. Hazard and risk assessments for river reaches protected by dikes have not adequately considered the fluvial inundation processes up to now. Particularly, the processes of dike failures and their influence on the hinterland inundation and flood wave propagation lack comprehensive consideration. This study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The model was developed and tested on a ca. 91 km heavily diked river reach on the German part of the Elbe River between gauges Torgau and Vockerode. The reach is characterised by low slope and fairly flat extended hinterland areas. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100, 200, 500, 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. In the disaggregated display mode, the dike hazard maps indicate the failure probabilities for each considered breach mechanism. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. Finally, scenarios of polder deployment for the extreme floods with T = 200, 500, 1000 were simulated with IHAM. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management. N2 - Entlang eingedeichter Flussabschnitte kann das Hinterland ein hohes Schadenspotential, aufgrund der starken Akkumulation der Werte, aufweisen. Obwohl Deiche einen effizienten Schutz gegen kleinere häufiger auftretende Hochwässer bieten, können sie unter der Last hoher Wasserstände sowie langer Anstaudauer versagen. Gefährdungs- und Risikoabschätzungsmethoden für die eingedeichten Flussstrecken haben bisher die fluvialen Überflutungsprozesse nicht hinreichend berücksichtigt. Besonders, die Prozesse der Deichbrüche und deren Einfluss auf Überflutung im Hinterland und Fortschreiten der Hochwasserwelle verlangen eine umfassende Betrachtung. Die vorliegende Studie setzt ihren Fokus auf die Entwicklung und Anwendung eines neuen Modellierungssystems, das eine umfassende Hochwassergefährdungsanalyse entlang eingedeichter Flussstrecken unter Berücksichtigung von Deichbrüchen ermöglicht. Das vorgeschlagene Inundation Hazard Assessment Model (IHAM) stellt ein hybrides probabilistisch-deterministisches Modell dar. Es besteht aus drei laufzeitgekoppelten Modellen: (1) einem 1D instationären hydrodynamisch-numerischen Modell für den Flussschlauch und die Vorländer zwischen den Deichen, (2) einem probabilistischen Deichbruchmodell, welches die möglichen Bruchstellen, Breschenbreiten und Breschenausflüsse berechnet, und (3) einem 2D raster-basierten Überflutungsmodell für das Hinterland, das auf dem Speiherzellenansatz und der Diffusionswellengleichung basiert ist. Das probabilistische Deichbruchmodell beschreibt Deichbrüche, die infolge von drei Bruchmechanismen auftreten: dem Überströmen, dem Piping im Deichuntergrund und dem Versagen der landseitigen Böschung als Folge des Sickerflusses und der Erosion im Deichkörper (Mikro-Instabilität). Das 2D Speicherzellenmodell, angetrieben durch den Breschenausfluss als Randbedingung, berechnet ein erweitertes Spektrum der Hochwasserintensitätsindikatoren wie: Überflutungstiefe, Fliessgeschwindigkeit, Impuls, Überflutungsdauer und Wasseranstiegsrate. IHAM wird im Rahmen einer Monte Carlo Simulation ausgeführt und berücksichtigt die natürliche Variabilität der Hochwasserentstehungsprozesse, die in der Form der Hydrographen und deren Häufigkeit abgebildet wird, und die Zufälligkeit des Deichversagens, gegeben durch die Lokationen der Bruchstellen, der Zeitpunkte der Brüche und der Breschenbreiten. Das Modell wurde entwickelt und getestet an einem ca. 91 km langen Flussabschnitt. Dieser Flussabschnitt ist durchgängig eingedeicht und befindet sich an der deutschen Elbe zwischen den Pegeln Torgau und Vockerode. Die Szenarioberechnungen wurden von synthetischen Hydrographen für den Hauptstrom und Nebenfluss angetrieben, die für Hochwässer mit Wiederkehrintervallen von 100, 200, 500, und 1000 Jahren entwickelt wurden. Basierend auf den Modellierungsergebnissen wurden probabilistische Deichgefährdungskarten generiert. Sie zeigen die Versagenswahrscheinlichkeiten der diskretisierten Deichabschnitte für jede modellierte Hochwassermagnitude. Die Deichgefährdungskarten im disaggregierten Darstellungsmodus zeigen die Bruchwahrscheinlichkeiten für jeden betrachteten Bruchmechanismus. Neben den binären Überflutungsmustern, die die Wahrscheinlichkeit der Überflutung jeder Rasterzelle im Hinterland zeigen, generiert IHAM probabilistische Hochwassergefährdungskarten. Diese Karten stellen räumliche Muster der in Betracht gezogenen Hochwasserintensitätsindikatoren und entsprechende Jährlichkeiten dar. Schließlich, wurden mit IHAM Szenarien mit Aktivierung vom Polder bei extremen Hochwässern mit Jährlichkeiten von 200, 500, 1000 Jahren simuliert. Das entwickelte IHAM Modellierungssystem stellt ein neues wissenschaftliches Werkzeug für die Untersuchung fluvialer Überflutungsdynamik in extremen Hochwassersituationen unter Berücksichtigung des Einflusses technischer Hochwasserschutzmaßnahmen dar. Das IHAM System hat eine hohe praktische Bedeutung für die Entscheidungsunterstützung im Hochwassermanagement aufgrund der neuartigen Deichbruch- und Hochwassergefährdungskarten, die das Hauptprodukt der Simulationen darstellen. KW - Hochwasser KW - Deichbruch KW - Unsicherheitsanalyse KW - Gefährdungskarten KW - Polder KW - Flood KW - dike breach KW - uncertainty analysis KW - hazard maps KW - polder Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27646 ER -