TY - JOUR A1 - Bougeois, Laurie A1 - Dupont-Nivet, Guillaume A1 - de Rafelis, Marc A1 - Tindall, Julia C. A1 - Proust, Jean-Noel A1 - Reichart, Gert-Jan A1 - de Nooijer, Lennart J. A1 - Guo, Zhaojie A1 - Ormukov, Cholponbelk T1 - Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters JF - Earth and planetary science letters N2 - Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises. KW - Eocene monsoon KW - aridification KW - Paratethys sea KW - Central Asia KW - seasonality KW - bivalves Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2017.12.036 SN - 0012-821X SN - 1385-013X VL - 485 SP - 99 EP - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fitzsimmons, Kathryn E. A1 - Sprafke, Tobias A1 - Zielhofer, Christoph A1 - Günter, Christina A1 - Deom, Jean-Marc A1 - Sala, Renato A1 - Iovita, Radu T1 - Loess accumulation in the Tian Shan piedmont BT - Implications for palaeoenvironmental change in arid Central Asia JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - Whilst correlations have been made between the loess of Europe and China, deposits in Central Asia have remained largely overlooked by scientific investigation. The nature of the relationship between loess accumulation and palaeoclimate at the core of the Eurasian loess belt is particularly poorly understood. Here we reconstruct palaeoenvironmental change in Central Asia over the last 40 ky based on data from the Remizovka loess profile, in the northern foothills of the Tian Shan in southern Kazakhstan. Our interpretations are based on synthesis of chronostratigraphic, colour and magnetic susceptibility data, supported by chronostratigraphies from two additional sites nearby, Maibulak and Valikhanova. All three sites record substantially increased loess accumulation during late MIS 3 into the global last glacial maximum (gLGM). At Remizovka, increased loess flux occurred in two pulses at c. 38-25 ka and 22-18 ka, with the intervening period involving incipient pedogenesis. At Maibulak, two loess pulses at c. 40-30 ka and c. 28-22 ka are separated by a weakly developed paleosol which may date to the same time as pedogenesis at Remizovka. There is additional possible periglacial influence at Maibulak from c. 40-33.5 ka. At Valikhanova, there is some age overlap between paleosol and loess samples, but overall loess accumulation appears to have increased at c. 42-35 ka, c. 30 ka and the gLGM, with pedogenesis occurring >40 ka and c. 32 ka. At all three sites, Holocene loess accumulation is minimal; this period is characterised by pedogenesis. The chronostratigraphic variability between our sites highlights a need to interrogate climate-driven models for loess formation in piedmont environments. We interpret our data in the context of regional palaeoenvironmental archives to indicate that loess accumulation increased coeval with MIS 3 glacial advance in the Tian Shan, which was facilitated by northward expansion of the Asian monsoon and associated increase in precipitation. We hypothesise that increased ice volume impeded teleconnections with the temperate zone westerlies to the north; these were compressed against the piedmont resulting in increased wind strength and facilitating increased loess flux. Peak loess accumulation during the gLGM occurred under colder, drier climatic conditions, with reduced but sustained glacial ice volume and persistent influence of the westerlies in the arid Central Asian piedmont loess belt. In the absence of more widespread, reliably dated palaeoenvironmental records from the region, our data become of critical importance for understanding past environmental conditions in Central Asia, relative to elsewhere in Eurasia and globally. KW - Loess KW - Central Asia KW - Tian Shan piedmont KW - Kazakhstan KW - Palaeoenvironmental reconstruction KW - luminescence dating Y1 - 2018 U6 - https://doi.org/10.1016/j.quaint.2016.07.041 SN - 1040-6182 SN - 1873-4553 VL - 469 SP - 30 EP - 43 PB - Elsevier CY - Oxford ER -