TY - JOUR A1 - Sadowska, Aleksandra A1 - Kameda, Takuya A1 - Krupkova, Olga A1 - Wuertz-Kozak, Karin T1 - Osmosensing, osmosignalling and inflammation BT - how intervertebral disc cells respond to altered osmolarity JF - European cells & materials N2 - Intervertebral disc (IVD) cells are naturally exposed to high osmolarity and complex mechanical loading, which drive microenvironmental osmotic changes. Age- and degeneration-induced degradation of the IVD’s extracellular matrix causes osmotic imbalance, which, together with an altered function of cellular receptors and signalling pathways, instigates local osmotic stress. Cellular responses to osmotic stress include osmoadaptation and activation of pro-inflammatory pathways. This review summarises the current knowledge on how IVD cells sense local osmotic changes and translate these signals into physiological or pathophysiological responses, with a focus on inflammation. Furthermore, it discusses the expression and function of putative membrane osmosensors (e.g. solute carrier transporters, transient receptor potential channels, aquaporins and acid-sensing ion channels) and osmosignalling mediators [e.g. tonicity response-element-binding protein/nuclear factor of activated T-cells 5 (TonEBP/NFAT5), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)] in healthy and degenerated IVDs. Finally, an overview of the potential therapeutic targets for modifying osmosensing and osmosignalling in degenerated IVDs is provided. KW - Intervertebral disc degeneration KW - degenerative disc disease KW - osmolarity KW - hyper-osmolarity KW - hypo-osmolarity KW - osmotic KW - inflammatory KW - transient receptor potential channel KW - aquaporin KW - tonicity-responsive enhancer binding protein Y1 - 2018 U6 - https://doi.org/10.22203/eCM.v036a17 SN - 1473-2262 VL - 36 SP - 231 EP - 250 PB - Ao research institute davos-Ari CY - Davos ER - TY - GEN A1 - Sadowska, Aleksandra A1 - Kameda, Takuya A1 - Krupkova, Olga A1 - Würtz-Kozak, Karin T1 - Osmosensing, osmosignalling and inflammation BT - how intervertebral disc cells respond to altered osmolarity T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Intervertebral disc (IVD) cells are naturally exposed to high osmolarity and complex mechanical loading, which drive microenvironmental osmotic changes. Age- and degeneration-induced degradation of the IVD's extracellular matrix causes osmotic imbalance, which, together with an altered function of cellular receptors and signalling pathways, instigates local osmotic stress. Cellular responses to osmotic stress include osmoadaptation and activation of pro-inflammatory pathways. This review summarises the current knowledge on how IVD cells sense local osmotic changes and translate these signals into physiological or pathophysiological responses, with a focus on inflammation. Furthermore, it discusses the expression and function of putative membrane osmosensors (e.g. solute carrier transporters, transient receptor potential channels, aquaporins and acid-sensing ion channels) and osmosignalling mediators [e.g. tonicity responseelement-binding protein/nuclear factor of activated T-cells 5 (TonEBP/NFAT5), nuclear factor kappa-lightchain-enhancer of activated B cells (NF-kappa B)] in healthy and degenerated IVDs. Finally, an overview of the potential therapeutic targets for modifying osmosensing and osmosignalling in degenerated IVDs is provided. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 693 KW - intervertebral disc degeneration KW - degenerative disc disease KW - osmolarity KW - hyper-osmolarity KW - hypo-osmolarity KW - osmotic KW - inflammatory KW - transient receptor potential channel KW - aquaporin KW - tonicity-responsive enhancer binding protein Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469080 SN - 1866-8364 IS - 693 ER -