TY - JOUR A1 - Adesina, Morenike O. A1 - Block, Inga A1 - Günter, Christina A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite JF - ACS Omega N2 - New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84% for TET and 51% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal. Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c00184 SN - 2470-1343 VL - 8 IS - 24 SP - 21594 EP - 21604 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mazarei, Elham A1 - Penschke, Christopher A1 - Saalfrank, Peter T1 - Band gap engineering in two-dimensional materials by functionalization BT - Methylation of graphene and graphene bilayers JF - ACS Omega N2 - Graphene is well-knownfor its unique combination of electricaland mechanical properties. However, its vanishing band gap limitsthe use of graphene in microelectronics. Covalent functionalizationof graphene has been a common approach to address this critical issueand introduce a band gap. In this Article, we systematically analyzethe functionalization of single-layer graphene (SLG) and bilayer graphene(BLG) with methyl (CH3) using periodic density functionaltheory (DFT) at the PBE+D3 level of theory. We also include a comparisonof methylated single-layer and bilayer graphene, as well as a discussionof different methylation options (radicalic, cationic, and anionic).For SLG, methyl coverages ranging from 1/8 to 1/1, (i.e.,the fully methylated analogue of graphane) are considered. We findthat up to a coverage theta of 1/2, graphene readily accepts CH3, with neighbor CH3 groups preferring trans positions. Above theta = 1/2, the tendency to accept further CH3 weakens and the lattice constant increases. The band gapbehaves less regularly, but overall it increases with increasing methylcoverage. Thus, methylated graphene shows potential for developingband gap-tuned microelectronics devices and may offer further functionalizationoptions. To guide in the interpretation of methylation experiments,vibrational signatures of various species are characterized by normal-modeanalysis (NMA), their vibrational density of states (VDOS), and infrared(IR) spectra, the latter two are obtained from ab initio moleculardynamics (AIMD) in combination with a velocity-velocity autocorrelationfunction (VVAF) approach. KW - Adsorption KW - Alkyls KW - Band structure KW - Electrical conductivity KW - Two dimensional materials Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c02068 SN - 2470-1343 VL - 8 IS - 24 SP - 22026 EP - 22041 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - The multiple bond character of the carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs) on the magnetic criterion JF - Tetrahedron N2 - Geometry, 11B, 13C chemical shifts and the spatial magnetic properties (Through-Space NMR Shieldings -TSNMRS) of both cations and anions of boron-trapped N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) and of the corresponding diborane/diborene/diboryne dis-carbene adducts have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept; the TSNMRS results are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The ICSS of the TSNMRS (actually the anisotropy effects measurable in 1H NMR spectroscopy) are employed to qualify and quantify the present multiple bond character of the Carbene-Boron bond in the trapped NHCs and CAACs. Results are confirmed by bond length and 11B/13C chemical shift variations. Thus the partial multiple bond character of the Carbene-Boron bond cannot be expressed by the arrow of weak, much longer dative bonds and should be omitted as in other covalent lone pair-it or triel bonds. & COPY; 2023 Elsevier Ltd. All rights reserved. KW - NHCs KW - CAACs KW - Multiple NHC(CAAC)-Boron bonds KW - Through -space NMR KW - shieldings (TSNMRS) KW - NICS KW - Anisotropy effect KW - Ring current effect Y1 - 2023 U6 - https://doi.org/10.1016/j.tet.2023.133469 SN - 0040-4020 SN - 1464-5416 VL - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schlappa, Stephanie A1 - Bressel, Lena A1 - Reich, Oliver A1 - Münzberg, Marvin T1 - Advanced particle size analysis in high-solid-content polymer dispersions using photon density wave spectroscopy JF - Polymers N2 - High-solid-content polystyrene and polyvinyl acetate dispersions of polymer particles with a 50 nm to 500 nm mean particle diameter and 12-55% (w/w) solid content have been produced via emulsion polymerization and characterized regarding their optical and physical properties. Both systems have been analyzed with common particle-size-measuring techniques like dynamic light scattering (DLS) and static light scattering (SLS) and compared to inline particle size distribution (PSD) measurements via photon density wave (PDW) spectroscopy in undiluted samples. It is shown that particle size measurements of undiluted polystyrene dispersions are in good agreement between analysis methods. However, for polyvinyl acetate particles, size determination is challenging due to bound water in the produced polymer. For the first time, water-swelling factors were determined via an iterative approach of PDW spectroscopy error (X-2) minimization. It is shown that water-swollen particles can be analyzed in high-solid-content solutions and their physical properties can be assumed to determine the refractive index, density, and volume fraction in dispersion. It was found that assumed water swelling improved the reduced scattering coefficient fit by PDW spectroscopy by up to ten times and particle size determination was refined and enabled. Particle size analysis of the water-swollen particles agreed well with offline-based state-of-the-art techniques. KW - emulsion polymerization KW - multiple light scattering KW - photon density wave KW - spectroscopy KW - particle sizing KW - swelling of polymers Y1 - 2023 U6 - https://doi.org/10.3390/polym15153181 SN - 2073-4360 VL - 15 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Xu, Yaolin A1 - Dong, Kang A1 - Jie, Yulin A1 - Adelhelm, Philipp A1 - Chen, Yawei A1 - Xu, Liang A1 - Yu, Peiping A1 - Kim, Junghwa A1 - Kochovski, Zdravko A1 - Yu, Zhilong A1 - Li, Wanxia A1 - LeBeau, James A1 - Shao-Horn, Yang A1 - Cao, Ruiguo A1 - Jiao, Shuhong A1 - Cheng, Tao A1 - Manke, Ingo A1 - Lu, Yan T1 - Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives JF - Avanced energy materials N2 - In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application. KW - advanced characterization KW - Li deposition KW - Li dissolution KW - Li metal KW - anodes KW - mechanistic understanding KW - solid-electrolyte-interphase KW - theoretical simulation Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202200398 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 19 PB - Wiley CY - Weinheim ER - TY - THES A1 - Heinz, Markus T1 - Synthese von Monomeren auf der Basis nachwachsender Rohstoffe und ihre Polymerisation T1 - Synthesis of Monomers based on Renewable Resources and their Polymerization N2 - Die vorliegende Arbeit thematisiert die Synthese und die Polymerisation von Monomeren auf der Basis nachwachsender Rohstoffe wie zum Beispiel in Gewürzen und ätherischen Ölen enthaltenen kommerziell verfügbaren Phenylpropanoiden (Eugenol, Isoeugenol, Zimtalkohol, Anethol und Estragol) und des Terpenoids Myrtenol sowie ausgehend von der Rinde einer Birke (Betula pendula) und der Korkeiche (Quercus suber). Ausgewählte Phenylpropanoide (Eugenol, Isoeugenol und Zimtalkohol) und das Terpenoid Myrtenol wurden zunächst in den jeweiligen Laurylester überführt und anschließend das olefinische Strukturelement epoxidiert, wobei 4 neue (2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat, 2-Methoxy-4-(3-methyl-oxiran-2-yl)phenyldodecanoat, (3-Phenyloxiran-2-yl)methyldodecanoat, (7,7-Dimethyl-3-oxatricyclo[4.1.1.02,4]octan-2-yl)methyldodecanoat) und 2 bereits bekannte monofunktionelle Epoxide (2-(4-Methoxybenzyl)oxiran und 2-(4-Methoxyphenyl)-3-methyloxiran) erhalten wurden, die mittels 1H-NMR-, 13C-NMR- und FT-IR-Spektroskopie sowie mit DSC untersucht wurden. Die Photo-DSC Untersuchung der Epoxidmonomere in einer kationischen Photopolymerisation bei 40 °C ergab die maximale Polymerisationsgeschwindigkeit (Rpmax: 0,005 s-1 bis 0,038 s-1) sowie die Zeit (tmax: 13 s bis 26 s) bis zum Erreichen des Rpmax-Wertes und führte zu flüssigen Oligomeren, deren zahlenmittlerer Polymerisationsgrad mit 3 bis 6 mittels GPC bestimmt wurde. Die Umsetzung von 2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat mit Methacrylsäure ergab ein Isomerengemisch (2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat), das mittels Photo-DSC in einer freien radikalischen Photopolymerisation untersucht wurde (Rpmax: 0,105 s-1 und tmax: 5 s), die zu festen in Chloroform unlöslichen Polymeren führte. Aus Korkpulver und gemahlener Birkenrinde wurden selektiv 2 kristalline ω-Hydroxyfettsäuren (9,10-Epoxy-18-hydroxyoctadecansäure und 22-Hydroxydocosansäure) isoliert. Die kationische Photopolymerisation der 9,10-Epoxy-18-hydroxyoctadecansäure ergab einen nahezu farblosen transparenten und bei Raumtemperatur elastischen Film, welcher ein Anwendungspotential für Oberflächenbeschichtungen hat. Aus der Reaktion von 9,10-Epoxy-18-hydroxyoctadecansäure mit Methacrylsäure wurde ein bei Raumtemperatur flüssiges Gemisch aus zwei Konstitutionsisomeren (9,18-Dihydroxy-10-(methacryloyloxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure) erhalten (Tg: -60 °C). Die radikalische Photopolymerisation dieser Konstitutionsisomere wurde ebenfalls mittels Photo-DSC untersucht (Rpmax: 0,098 s-1 und tmax: 3,8 s). Die Reaktion von 22-Hydroxydocosansäure mit Methacryloylchlorid ergab die kristalline 22-(Methacryloyloxy)docosansäure, welche ebenfalls in einer radikalischen Photopolymerisation mittels Photo-DSC untersucht wurde (Rpmax: 0,023 s-1 und tmax: 9,6 s). Die mittels AIBN in Dimethylsulfoxid initiierte Homopolymerisation der 22-(Methacryloyloxy)docosansäure und der Isomerengemische bestehend aus 2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat sowie aus 9,18-Dihydroxy-10-(methacryloy-loxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure ergab feste lösliche Polymere, die mittels 1H-NMR- und FT-IR-Spektroskopie, GPC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Pn = 94) und DSC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Tg: 52 °C; Poly(9,18-dihydroxy-10-(methacryloyloxy)-octadecansäure / 9-(methacryloyloxy)-10,18-dihydroxyoctadecansäure): Tg: 10 °C; Poly(22-(methacryloyloxy)docosansäure): Tm: 74,1 °C, wobei der Schmelzpunkt mit dem des Photopolymers (Tm = 76,8 °C) vergleichbar ist) charakterisiert wurden. Das bereits bekannte Monomer 4-(4-Methacryloyloxyphenyl)butan-2-on wurde ausgehend von 4-(4-Hydroxyphenyl)butan-2-on hergestellt, welches aus Birkenrinde gewonnen werden kann, und unter identischen Bedingungen für einen Vergleich mit den neuen Monomeren polymerisiert. Die freie radikalische Polymerisation führte zu Poly(4-(4-methacryloyloxyphenyl)butan-2-on) (Pn: 214 und Tg: 83 °C). Neben der Homopolymerisation wurde eine statistische Copolymerisation des Isomerengemisches 2-Methoxy-4-(2-hydroxy-3-(methacryl-oyloxy)propyl)phenyldodecanoat / 2-Methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)-phenyldodecanoat mit 4-(4-Methacryloyloxyphenyl)butan-2-on untersucht, wobei ein äquimolarer Einsatz der Ausgangsmonomere zu einem Anstieg der Ausbeute, der Molmassenverteilung und der Dispersität des Copolymers (Tg: 44 °C) führte. Die unter Verwendung von Diethylcarbonat als „grünes“ Lösungsmittel mittels AIBN initiierten freien radikalischen Homopolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on und von Laurylmethacrylat ergaben vergleichbare Polymerisationsgrade der Homopolymere (Pn: 150), welche jedoch aufgrund ihrer Strukturunterschiede deutlich unterschiedliche Glasübergangstemperaturen hatten (Poly(4-(4-methacryloyloxyphenyl)butan-2-on): Tg: 70 °C, Poly(laurylmethacrylat) Tg: -49 °C. Eine statistische Copolymerisation äquimolarer Stoffmengen der beiden Monomere in Diethylcarbonat führte bei einer Polymerisationszeit von 60 Minuten zu einem leicht bevorzugten Einbau des 4-(4-Methacryloyloxyphenyl)butan-2-on in das Copolymer (Tg: 17 °C). Copolymerisationsdiagramme für die freien radikalischen Copolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on mit n-Butylmethacrylat beziehungsweise 2-(Dimethylamino)ethylmethacrylat (t: 20 min bis 60 min; Molenbrüche (X) für 4-(4-Methacryloyloxyphenyl)butan-2-on: 0,2; 0,4; 0,6 und 0,8) zeigten ein nahezu ideales azeotropes Copolymerisationsverhalten, obwohl ein leicht bevorzugter Einbau von 4-(4-Methacryloyloxyphenyl)butan-2-on in das jeweilige Copolymer beobachtet wurde. Dabei korreliert ein Anstieg der Ausbeute und der Glasübergangstemperatur der erhaltenen Copolymere mit einem zunehmenden Gehalt an 4-(4-Methacryloyloxyphenyl)butan-2-on im Reaktionsgemisch. Die unter Einsatz der modifizierten Gibbs-DiMarzio-Gleichung berechneten Glasübergangstemperaturen der Copolymere stimmten mit den gemessenen Werten gut überein. Das ist eine gute Ausgangsbasis für die Bestimmung der Glasübergangstemperatur eines Copolymers mit einer beliebigen Zusammensetzung. N2 - The subject of this work is the synthesis and polymerization of monomers based on renewable material e. g. commercially available phenylpropanoides (eugenol, iso-eugenol, cinnamyl alcohol, anethol, and estragol) containing in spices and essential oils, the terpenoid myrtenol, as well as material derived from the bark of a birch (Betula pendula) and cork oak (Quercus suber). Selected phenylpropanoides (eugenol, iso-eugenol and cinnamyl alcohol) and the terpenoid myrtenol were first transferred to the lauryl ester followed by epoxidation of the olefinic structure to yield 4 new (2-methoxy-4-(oxiran-2-ylmethyl)-phenyl dodecanoate, 2-methoxy-4-(3-methyloxiran-2-yl)phenyl dodecanoate, (3-phenyloxiran-2-yl)methyl dodecanoate, (7,7-dimethyl-3-oxatricyclo[4.1.1.02,4]octan-2-yl)methyl dodecanoate) and 2 already known monofunctional epoxides (2-(4-methoxybenzyl)oxirane and 2-(4-methoxy-phenyl)-3-methyloxirane), which were investigated using 1H-NMR-, 13C-NMR- and FT-IR- spectroscopy, and DSC. Photo-DSC investigation of the cationic polymerization of the epoxy monomers at 40 °C revealed the maximum polymerization rate (Rpmax: 0,005 s-1 to 0,038 s-1) and the time (tmax: 13 s to 26 s) to obtain the Rpmax value. Liquid oligomers were obtained with a number average degree of polymerization between 3 and 6, as determined by GPC. The reaction of 2-methoxy-4-(oxiran-2-ylmethyl)phenyl dodecanoate with methacrylic acid resulted in a mixture of isomers (2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)-phenyl dodecanoate and 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyl dodecanoate). Free radical photopolymerization of this isomeric mixture, studied by photo-DSC (Rpmax: 0,105 s-1 and tmax: 5 s), resulted in solid polymers that were insoluble in chloroform. Two crystalline ω-hydroxy fatty acids (9,10-epoxy-18-hydroxyoctadecanoic acid and 22-hydroxydocosanoic acid) were selectively isolated from cork powder and powdered birch bark. The cationic photopolymerization of 9,10-epoxy-18-hydroxyoctadecanoic acid resulted in a nearly colorless transparent film that was elastic at room temperature. Therefore, it has an application potential in the manufacture of coatings. The reaction of 9,10-epoxy-18-hydroxyoctadecanoic acid with methacrylic acid resulted in a mixture of two constitutional isomers (9,18-dihydroxy-10-(methacryloyloxy)octadecanoic acid and 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid), which is liquid at room temperature (Tg: -60 °C). The radical photopolymerization of these constitutional isomers was also studied by photo-DSC (Rpmax: 0,098 s-1 and tmax: 3,8 s). The reaction of 22-hydroxydocosanoic acid with methacryloyl chloride yielded crystalline 22-(methacryloyloxy)docosanoic acid, which was studied by photo-DSC in a radical photopolymerization (Rpmax: 0,023 s-1 and tmax: 9,6 s). The homopolymerization of both 22-(methacryloyloxy)docosanoic acid and the isomeric mixtures consisting of 2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate and 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyl dodecanoat as well as 9,18-dihydroxy-10-(methacryloyloxy)octadecanoic acid and 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid resulted in solid soluble polymers, which were characterized by 1H-NMR- and FT-IR-spectroscopy, GPC (poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxy-propyl)phenyl dodecanoate): Pn = 94), and DSC (poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxy-propyl)phenyl dodecanoate): Tg: 52 °C; poly(9,18-dihydroxy-10-(methacryloyloxy)-octadecanoic acid / 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid): Tg: 10 °C; poly(22-(methacryloyloxy)docosanoic acid): Tm: 74,1 °C, this melting temperature is comparable to that of the photopolymer (Tm = 76,8 °C)). The already known monomer 4-(4-methacryloyloxyphenyl)butane-2-one was synthesized from 4-(4-hydroxyphenyl)butan-2-one obtained from birch bark and polymerized under identical conditions for comparison with the new monomers. The free radical polymerization resulted in poly(4-(4-methacryloyloxyphenyl)butan-2-one) (Pn: 214 and Tg: 83 °C). Besides the homopolymerization, a random copolymerization of the 2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate / 2-methoxy-4-(2-(methacryloyl-oxy)-3-hydroxypropyl)phenyl dodecanoate isomer mixture with 4-(4-methacryloyloxyphenyl)butan-2-one was also investigated, which resulted in an increase in the yield, molecular weight distribution and dispersity of the copolymer (Tg: 44 °C) at a stoichiometric ratio of the monomers. The application of diethyl carbonate as „green“ solvent in the free radical homopolymerization of both 4-(4-methacryloyloxyphenyl)butan-2-one and lauryl methacrylate initiated with AIBN resulted in a comparable degree of polymerization of the homopolymers obtained (Pn: 150). However, due to the structural differences of the monomer segments, different glass transition temperatures were obtained for poly(4-(4-methacryloyloxyphenyl)butan-2-one) (Tg: 70 °C) and poly(lauryl methacrylate) (Tg: -49 °C). A random copolymerization of a stoichiometric ratio of the monomers in diethyl carbonate resulted in a slightly preferential incorporation of the 4-(4-methacryloyloxyphenyl)butan-2-one in the copolymer (Tg: 17 °C) after a polymerization time of 60 min. Copolymerization diagrams for free radical copolymerizations of 4-(4-methacryloyloxyphenyl)butan-2-one with either n-butyl methacrylate or 2-(dimethylamino)ethyl methacrylate (t: 20 min to 60 min; molar fraction (X) for 4-(4-methacryloyloxyphenyl)butan-2-one: 0,2; 0,4; 0,6 and 0,8) showed an almost ideal azeotropic copolymerization behavior, although a slightly preferential incorporation of the 4-(4-methacryloyloxyphenyl)butan-2-one was observed in the copolymers. An increase in both yield and glass transition temperature of the copolymers obtained correlated with an increasing content on 4-(4-methacryloyloxyphenyl)butan-2-one in the reaction mixture. Good agreement was found between the glass transition temperatures calculated using the modified Gibbs-DiMarzio equation and the measured values for the copolymers. This is a good basis for determining the glass transition temperature of a copolymer of any composition. KW - photoinitiierte kationische Polymerisation KW - Epoxide KW - epoxidierte Phenylpropanoide KW - epoxidierte Terpene KW - Copolymerisationsdiagramme KW - freie radikalische Polymerisation KW - Glasübergangstemperaturen KW - Methacrylate KW - Molmassen KW - statistische Copolymere KW - 9,10-Epoxy-18-hydroxyoctadecansäure KW - biobasierte Methacrylate KW - biobasierte Monomere KW - nachwachsende Rohstoffe KW - 22-Hydroxydocosansäure KW - photoinitiierte Polymerisation KW - Polymerisation KW - Betula pendula KW - Quercus suber KW - Birke KW - Korkeiche KW - Biomasse KW - Birkenrinde KW - grüne Chemie KW - Polymere KW - photoinitiierte freie radikalische Polymerisation KW - 22-hydroxydocosanoic acid KW - 9,10-epoxy-18-hydroxyoctadecanoic acid KW - Betula pendula KW - biomass KW - birch KW - birch bark KW - copolymerization diagrams KW - Epoxides KW - Glass transition temperatures KW - Cork oak KW - Methacrylates KW - Molar masses KW - polymers KW - polymerization KW - Quercus suber KW - bio-based methacrylates KW - bio-based monomers KW - epoxidized phenylpropanoids KW - epoxidized terpenes KW - free radical polymerization KW - green chemistry KW - renewable raw materials KW - photoinitiated polymerization KW - photoinitiated free radical KW - photoinitiated cationic polymerization KW - random copolymers KW - photopolymerization KW - Baumrinde KW - Rinde KW - tree bark KW - bark KW - Photopolymerisation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-637943 ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature communications N2 - Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - Publisher correction: https://doi.org/10.1038/s41467-022-28584-2 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Müller, Johannes A1 - Kewes, Günter A1 - Koch, Christoph T. A1 - Lu, Yan A1 - Benson, Oliver T1 - Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing JF - ACS nano N2 - Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit. KW - plasmonics KW - nanoparticle assemblies KW - core-shell KW - spin-orbit coupling KW - chirality KW - circular dichroism KW - nano-optics Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.0c05240 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 1 SP - 351 EP - 361 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ning, Jiaoyi A1 - Yu, Hongtao A1 - Mei, Shilin A1 - Schütze, Yannik A1 - Risse, Sebastian A1 - Kardjilov, Nikolay A1 - Hilger, André A1 - Manke, Ingo A1 - Bande, Annika A1 - Ruiz, Victor G. A1 - Dzubiella, Joachim A1 - Meng, Hong A1 - Lu, Yan T1 - Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries JF - ChemSusChem N2 - Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries. KW - electrochemistry KW - energy storage KW - lithium-sulfur batteries KW - operando KW - studies KW - organosulfur Y1 - 2022 U6 - https://doi.org/10.1002/cssc.202200434 SN - 1864-5631 SN - 1864-564X VL - 15 IS - 14 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Lau, Skadi A1 - Liu, Yue A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation JF - MRS communications / a publication of the Materials Research Society N2 - In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00072-6 SN - 2159-6867 VL - 11 IS - 5 SP - 559 EP - 567 PB - Springer CY - Berlin ER - TY - JOUR A1 - Neusser, David A1 - Sun, Bowen A1 - Tan, Wen Liang A1 - Thomsen, Lars A1 - Schultz, Thorsten A1 - Perdigon-Toro, Lorena A1 - Koch, Norbert A1 - Shoaee, Safa A1 - McNeill, Christopher R. A1 - Neher, Dieter A1 - Ludwigs, Sabine T1 - Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films. Y1 - 2022 U6 - https://doi.org/10.1039/d2tc01918c SN - 2050-7526 SN - 2050-7534 VL - 10 IS - 32 SP - 11565 EP - 11578 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tung, Wing Tai A1 - Sun, Xianlei A1 - Wang, Weiwei A1 - Xu, Xun A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt%, 6 wt%, and 4 wt% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-020-00001-0 SN - 2059-8521 VL - 6 IS - 10 SP - 276 EP - 282 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Stefancu, Andrei A1 - Nan, Lin A1 - Zhu, Li A1 - Chis, Vasile A1 - Bald, Ilko A1 - Liu, Min A1 - Leopold, Nicolae A1 - Maier, Stefan A. A1 - Cortes, Emiliano T1 - Controlling plasmonic chemistry pathways through specific ion effects JF - Advanced optical materials N2 - Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry. KW - chemical interface damping KW - Hofmeister effect KW - hydration layer KW - plasmonic chemistry KW - specific ion effects KW - surface-enhanced Raman scattering Y1 - 2022 U6 - https://doi.org/10.1002/adom.202200397 SN - 2195-1071 VL - 10 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Banerji, Amitabh A1 - Thyssen, Christoph A1 - Pampel, Barbara A1 - Huwer, Johannes T1 - Naturwissenschaftsunterricht und Informatik BT - bringt zusammen, was zusammen gehört?! BT - bringing together, what belongs together?! JF - Chemie konkret : CHEMKON ; Forum für Unterricht und Didaktik N2 - Computer literacy plays an increasingly important role in the education of 21st-century society. For chemistry' education. this results in two aspects: On the one hand. informatics education concepts can help to promote chemistry- and science-specific ways of thinking and working. On the other hand, chemistry education can contribute to information education. This paper addresses both aspects and tries to point out the Mutual benefits of informatics education and science education with regards to chemistry lessons. N2 - Informatische Bildung spielt eine immer zentralere Rolle in der Bildung einer Gesellschaft des 21. Jahrhunderts. Für den Chemieunterricht ergeben sich daraus zwei Aspekte: Einerseits können Konzepte der informatischen Bildung dabei helfen, chemie- und naturwissenschaftsspezifische Denk- und Arbeitsweisen zu fördern. Andererseits kann der Chemieunterricht einen Beitrag für die informatische Bildung leisten. Dieser Artikel geht auf beide Aspekte ein und versucht die gegenseitigen Vorteile der informatischen Bildung und der naturwissenschaftlichen Bildung im Chemieunterricht darzustellen. T2 - Science education and computer literacy KW - computer literacy KW - scientific literacy KW - informatische Bildung KW - naturwissenschaftliche Bildung Y1 - 2021 U6 - https://doi.org/10.1002/ckon.202100008 SN - 0944-5846 SN - 1521-3730 VL - 28 IS - 6 SP - 263 EP - 265 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhao, Yuhang A1 - Opitz, Andreas A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Koch, Norbert A1 - Lu, Yan T1 - Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform BT - implications for the charge transfer complex of Ag-F(4)TCNQ JF - ACS applied nano materials N2 - In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm. KW - Ag nanoparticles KW - F(4)TCNQ KW - phase transfer KW - kinetics KW - electron transfer KW - surface interaction Y1 - 2021 U6 - https://doi.org/10.1021/acsanm.1c02153 SN - 2574-0970 VL - 4 IS - 11 SP - 11625 EP - 11635 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhou, Shuo A1 - Xu, Xun A1 - Ma, Nan A1 - Jung, Friedrich A1 - Lendlein, Andreas T1 - Influence of sterilization conditions on sulfate-functionalized polyGGE JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained. KW - Sulfated polymer KW - sulfation KW - sterilization KW - ethylene oxide Y1 - 2021 U6 - https://doi.org/10.3233/CH-211241 SN - 1386-0291 SN - 1875-8622 VL - 79 IS - 4 SP - 597 EP - 608 PB - IOS Press CY - Amsterdam ER - TY - THES A1 - Mostafa, Amr T1 - DNA origami nanoforks: A platform for cytochrome c single molecule surface enhanced Raman spectroscopy N2 - This thesis presents a comprehensive exploration of the application of DNA origami nanofork antennas (DONAs) in the field of spectroscopy, with a particular focus on the structural analysis of Cytochrome C (CytC) at the single-molecule level. The research encapsulates the design, optimization, and application of DONAs in enhancing the sensitivity and specificity of Raman spectroscopy, thereby offering new insights into protein structures and interactions. The initial phase of the study involved the meticulous optimization of DNA origami structures. This process was pivotal in developing nanoscale tools that could significantly enhance the capabilities of Raman spectroscopy. The optimized DNA origami nanoforks, in both dimer and aggregate forms, demonstrated an enhanced ability to detect and analyze molecular vibrations, contributing to a more nuanced understanding of protein dynamics. A key aspect of this research was the comparative analysis between the dimer and aggregate forms of DONAs. This comparison revealed that while both configurations effectively identified oxidation and spin states of CytC, the aggregate form offered a broader range of detectable molecular states due to its prolonged signal emission and increased number of molecules. This extended duration of signal emission in the aggregates was attributed to the collective hotspot area, enhancing overall signal stability and sensitivity. Furthermore, the study delved into the analysis of the Amide III band using the DONA system. Observations included a transient shift in the Amide III band's frequency, suggesting dynamic alterations in the secondary structure of CytC. These shifts, indicative of transitions between different protein structures, were crucial in understanding the protein’s functional mechanisms and interactions. The research presented in this thesis not only contributes significantly to the field of spectroscopy but also illustrates the potential of interdisciplinary approaches in biosensing. The use of DNA origami-based systems in spectroscopy has opened new avenues for research, offering a detailed and comprehensive understanding of protein structures and interactions. The insights gained from this research are expected to have lasting implications in scientific fields ranging from drug development to the study of complex biochemical pathways. This thesis thus stands as a testament to the power of integrating nanotechnology, biochemistry, and spectroscopic techniques in addressing complex scientific questions. N2 - Diese Dissertation präsentiert eine umfassende Untersuchung der Anwendung von DNA-Origami-Nanogabelantennen (DONAs) im Bereich der Spektroskopie, mit einem besonderen Fokus auf der strukturellen Analyse von Cytochrom C (CytC) auf Einzelmolekülebene. Die Forschung umfasst das Design, die Optimierung und die Anwendung von DONAs zur Steigerung der Sensitivität und Spezifität der Raman-Spektroskopie und bietet somit neue Einblicke in Proteinstrukturen und -interaktionen. Die erste Phase der Studie beinhaltete die sorgfältige Optimierung von DNA-Origami-Strukturen. Dieser Prozess war entscheidend für die Entwicklung von Nanowerkzeugen, die die Fähigkeiten der Raman-Spektroskopie erheblich verbessern könnten. Die optimierten DNA-Origami-Nanogabeln, sowohl in Dimer- als auch in Aggregatform, zeigten eine verbesserte Fähigkeit, molekulare Schwingungen zu detektieren und zu analysieren, was zu einem nuancierteren Verständnis der Proteindynamik beitrug. Ein Schlüsselaspekt dieser Forschung war die vergleichende Analyse zwischen den Dimer- und Aggregatformen von DONAs. Dieser Vergleich zeigte, dass beide Konfigurationen effektiv Oxidations- und Spin-Zustände von CytC identifizieren konnten, wobei die Aggregatform aufgrund ihrer längeren Signalemission und der erhöhten Anzahl von Molekülen ein breiteres Spektrum an detektierbaren molekularen Zuständen bot. Die verlängerte Dauer der Signalemission in den Aggregaten wurde auf den kollektiven Hotspot-Bereich zurückgeführt, der die Gesamtsignalstabilität und -empfindlichkeit erhöhte. Darüber hinaus ging die Studie auf die Analyse der Amid-III-Bande unter Verwendung des DONA-Systems ein. Zu den Beobachtungen gehörte eine vorübergehende Verschiebung der Frequenz der Amid-III-Bande, was auf dynamische Veränderungen in der Sekundärstruktur von CytC hindeutete. Diese Verschiebungen, die auf Übergänge zwischen verschiedenen Proteinstrukturen hindeuteten, waren entscheidend für das Verständnis der funktionellen Mechanismen und Interaktionen des Proteins. Die in dieser Dissertation präsentierte Forschung leistet nicht nur einen bedeutenden Beitrag zum Gebiet der Spektroskopie, sondern veranschaulicht auch das Potenzial interdisziplinärer Ansätze in der Biosensorik. Der Einsatz von DNA-Origami-basierten Systemen in der Spektroskopie hat neue Wege für die Forschung eröffnet und bietet ein detailliertes und umfassendes Verständnis von Proteinstrukturen und -interaktionen. Die aus dieser Forschung gewonnenen Erkenntnisse werden voraussichtlich langfristige Auswirkungen auf wissenschaftliche Bereiche haben, die von der Arzneimittelentwicklung bis hin zur Untersuchung komplexer biochemischer Prozesse reichen. Diese Dissertation steht somit als Zeugnis für die Kraft der Integration von Nanotechnologie, Biochemie und spektroskopischen Techniken bei der Beantwortung komplexer wissenschaftlicher Fragen. KW - DNA origami KW - DNA origami nanoantennas (DONA) KW - SERS KW - Cytochrome C Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-635482 ER - TY - JOUR A1 - Michaelis, Vivien A1 - Aengenheister, Leonie A1 - Tuchtenhagen, Max A1 - Rinklebe, Jörg A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Buerki-Thurnherr, Tina A1 - Bornhorst, Julia T1 - Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts JF - International journal of molecular sciences N2 - Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes. KW - manganese KW - iron KW - placental transfer KW - TE interactions KW - BeWo b30 KW - trophoblasts Y1 - 2022 U6 - https://doi.org/10.3390/ijms23063296 SN - 1422-0067 VL - 23 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Bande, Annika A1 - González, Leticia A1 - Klamroth, Tillmann A1 - Tremblay, Jean Christophe T1 - Theoretical chemistry and quantum dynamics at interfaces BT - Celebrating the career of Peter Saalfrank on the occasion of his 60th birthday T2 - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature Y1 - 2022 U6 - https://doi.org/10.1016/j.chemphys.2022.111509 SN - 0301-0104 SN - 1873-4421 VL - 558 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Crovetto, Andrea A1 - Kojda, Danny A1 - Yi, Feng A1 - Heinselman, Karen N. A1 - LaVan, David A. A1 - Habicht, Klaus A1 - Unold, Thomas A1 - Zakutayev, Andriy T1 - Crystallize It before It diffuses BT - kinetic stabilization of thin-film phosphorus-rich semiconductor CuP2 JF - Journal of the american chemical society N2 - Numerous phosphorus-rich metal phosphides containing both P-P bonds and metal-P bonds are known from the solid-state chemistry literature. A method to grow these materials in thin-film form would be desirable, as thin films are required in many applications and they are an ideal platform for high-throughput studies. In addition, the high density and smooth surfaces achievable in thin films are a significant advantage for characterization of transport and optical properties. Despite these benefits, there is hardly any published work on even the simplest binary phosphorus-rich phosphide films. Here, we demonstrate growth of single-phase CuP2 films by a two-step process involving reactive sputtering of amorphous CuP2+x and rapid annealing in an inert atmosphere. At the crystallization temperature, CuP2 is thermodynamically unstable with respect to Cu3P and P-4. However, CuP2 can be stabilized if the amorphous precursors are mixed on the atomic scale and are sufficiently close to the desired composition (neither too P poor nor too P rich). Fast formation of polycrystalline CuP2, combined with a short annealing time, makes it possible to bypass the diffusion processes responsible for decomposition. We find that thin-film CuP2 is a 1.5 eV band gap semiconductor with interesting properties, such as a high optical absorption coefficient (above 10(5) cm(-1)), low thermal conductivity (1.1 W/(K m)), and composition-insensitive electrical conductivity (around 1 S/cm). We anticipate that our processing route can be extended to other phosphorus-rich phosphides that are still awaiting thin-film synthesis and will lead to a more complete understanding of these materials and of their potential applications. Y1 - 2022 U6 - https://doi.org/10.1021/jacs.2c04868 SN - 0002-7863 SN - 1520-5126 VL - 144 IS - 29 SP - 13334 EP - 13343 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tung, Wing Tai A1 - Maring, Janita A. A1 - Xu, Xun A1 - Liu, Yue A1 - Becker, Matthias A1 - Somesh, Dipthi Bachamanda A1 - Klose, Kristin A1 - Wang, Weiwei A1 - Sun, Xianlei A1 - Ullah, Imran A1 - Kratz, Karl A1 - Neffe, Axel T. A1 - Stamm, Christof A1 - Ma, Nan A1 - Lendlein, Andreas T1 - In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling JF - Advanced Functional Materials N2 - Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7% vs 28-32%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8% compared to 12.7-31.3%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside. KW - bioinstructive materials KW - cardiac regeneration KW - function by structure; KW - modulation of in vivo regeneration KW - multifunctional biomaterials Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202110179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 31 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Symmetry relations in wurtzite nitrides and oxide nitrides and the curious case of Pmc2(1) JF - Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances N2 - Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2(1), formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted. KW - group-subgroup relationships KW - nitride materials KW - wurtzite type Y1 - 2021 U6 - https://doi.org/10.1107/S2053273320015971 SN - 2053-2733 VL - 77 IS - 3 SP - 208 EP - 216 PB - Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Mei, Shilin A1 - Siebert, Andreas A1 - Xu, Yaolin A1 - Quan, Ting A1 - Garcia-Diez, Raul A1 - Bär, Marcus A1 - Härtel, Paul A1 - Abendroth, Thomas A1 - Dörfler, Susanne A1 - Kaskel, Stefan A1 - Lu, Yan T1 - Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells JF - Batteries & supercaps N2 - Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- & mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells. KW - lithium-sulfur batteries KW - pouch cell KW - spherical polyelectrolyte brushes (SPB) KW - Ti4O7 Y1 - 2022 U6 - https://doi.org/10.1002/batt.202100398 SN - 2566-6223 VL - 5 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lepre, Enrico A1 - Heske, Julian A1 - Nowakowski, Michal A1 - Scoppola, Ernesto A1 - Zizak, Ivo A1 - Heil, Tobias A1 - Kühne, Thomas D. A1 - Antonietti, Markus A1 - Lopez-Salas, Nieves A1 - Albero, Josep T1 - Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid JF - Nano energy N2 - Electrochemical reduction stands as an alternative to revalorize CO2. Among the different alternatives, Ni single atoms supported on carbonaceous materials are an appealing catalytic solution due to the low cost and versatility of the support and the optimal usage of Ni and its predicted selectivity and efficiency (ca. 100% towards CO). Herein, we have used noble carbonaceous support derived from cytosine to load Ni subnanometric sites. The large heteroatom content of the support allows the stabilization of up to 11 wt% of Ni without the formation of nanoparticles through a simple impregnation plus calcination approach, where nickel promotes the stabilization of C3NOx frameworks and the oxidative support promotes a high oxidation state of nickel. EXAFS analysis points at nickel single atoms or subnanometric clusters coordinated by oxygen in the material surface. Unlike the wellknown N-coordinated Ni single sites selectivity towards CO2 reduction, O-coordinated-Ni single sites (ca. 7 wt% of Ni) reduced CO2 to CO, but subnanometric clusters (11 wt% of Ni) foster the unprecedented formation of HCOOH with 27% Faradaic efficiency at - 1.4 V. Larger Ni amounts ended up on the formation of NiO nanoparticles and almost 100% selectivity towards hydrogen evolution. KW - CO 2 reduction reaction KW - Noble carbon KW - Ni-O4 electrocatalysts KW - Formic acid Y1 - 2022 U6 - https://doi.org/10.1016/j.nanoen.2022.107191 SN - 2211-2855 SN - 2211-3282 VL - 97 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haubitz, Toni A1 - Drobot, Björn A1 - Tsushima, Satoru A1 - Steudtner, Robin A1 - Stumpf, Thorsten A1 - Kumke, Michael Uwe T1 - Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpca.1c02487 SN - 1089-5639 SN - 1520-5215 VL - 125 IS - 20 SP - 4380 EP - 4389 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pham, Duong Tung A1 - Quan, Ting A1 - Mei, Shilin A1 - Lu, Yan T1 - Colloidal metal sulfide nanoparticles for high performance electrochemical energy storage systems JF - Current opinion in green and sustainable chemistry N2 - Transition metal sulfides have emerged as excellent replacement candidates of traditional insertion electrode materials based on their conversion or alloying mechanisms, facilitating high specific capacity and rate ability. However, parasitic reactions such as massive volume change during the discharge/ charge processes, intermediate polysulfide dissolution, and passivating solid electrolyte interface formation have led to poor cyclability, hindering their feasibility and applicability in energy storage systems. Colloidal metal sulfide nanoparticles, a special class that integrates the intrinsic chemical properties of metal sulfides and their specified structural features, have fairly enlarged their contribution due to the synergistic effect. This review highlights the latest synthetic approaches based on colloidal process. Their corresponding electrochemical outcomes will also be discussed, which are thoroughly updated along with their insight scientific standpoints. Y1 - 2022 U6 - https://doi.org/10.1016/j.cogsc.2022.100596 SN - 2452-2236 VL - 34 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reitenbach, Julija A1 - Geiger, Christina A1 - Wang, Peixi A1 - Vagias, Apostolos N. A1 - Cubitt, Robert A1 - Schanzenbach, Dirk A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Effect of magnesium salts with chaotropic anions on the swelling behavior of PNIPMAM thin films JF - Macromolecules : a publication of the American Chemical Society N2 - Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state. Y1 - 2023 U6 - https://doi.org/10.1021/acs.macromol.2c02282 SN - 0024-9297 SN - 1520-5835 VL - 56 IS - 2 SP - 567 EP - 577 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Halide perovskites BT - structural systematisation and what we learn from it T2 - Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances KW - halide perovskites KW - semiconductors KW - group-subgroup relations KW - twinning Y1 - 2021 U6 - https://doi.org/10.1107/S0108767321089479 SN - 2053-2733 VL - 77 IS - Suppl. SP - C750 EP - C750 PB - Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Nchiozem-Ngnitedem, Vaderament-Alexe A1 - Sperlich, Eric A1 - Matieta, Valaire Yemene A1 - Kuete, Jenifer Reine Ngnouzouba A1 - Kuete, Victor A1 - Omer, Ejlal A. A. A1 - Efferth, Thomas A1 - Schmidt, Bernd T1 - Synthesis and bioactivity of isoflavones from ficus carica and some non-natural analogues JF - Journal of natural products : Lloydia N2 - FicucariconeD (1) and its 4 '-demethyl congener 2 are isoflavones isolated from fruits of Ficus carica that share a 5,7-dimethoxy-6-prenyl-substituted A-ring. Both naturalproducts were, for the first time, obtained by chemical synthesisin six steps, starting from 2,4,6-trihydroxyacetophenone. Key stepsare a microwave-promoted tandem sequence of Claisen- and Cope-rearrangementsto install the 6-prenyl substituent and a Suzuki-Miyaura crosscoupling for installing the B-ring. By using various boronic acids,non-natural analogues become conveniently available. All compoundswere tested for cytotoxicity against drug-sensitive and drug-resistanthuman leukemia cell lines, but were found to be inactive. The compoundswere also tested for antimicrobial activities against a panel of eightGram-negative and two Gram-positive bacterial strains. Addition ofthe efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide(PA beta N) significantly improved the antibiotic activity in mostcases, with MIC values as low as 2.5 mu M and activity improvementfactors as high as 128-fold. KW - Antimicrobial activity KW - Bacteria KW - Ethers KW - Flavonoids KW - Mixtures Y1 - 2023 U6 - https://doi.org/10.1021/acs.jnatprod.3c00219 SN - 0163-3864 SN - 1520-6025 VL - 86 IS - 6 SP - 1520 EP - 1528 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Geiger, Christina A1 - Reitenbach, Julija A1 - Henschel, Cristiane A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Wang, Peixi A1 - Mangiapia, Gaetano A1 - Moulin, Jean-François A1 - Papadakis, Christine M. A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter T1 - Ternary nanoswitches realized with multiresponsive PMMA-b-PNIPMAM films in mixed water/acetone vapor atmospheres JF - Advanced engineering materials N2 - To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co-nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol%/10 vol%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone-exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions "off," "on," and "standby." For understanding the switching process, time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier-transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build-up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character. KW - co-nonsolvency KW - diblock copolymers KW - nanoswitches KW - neutron reflectometry KW - thin films Y1 - 2021 U6 - https://doi.org/10.1002/adem.202100191 SN - 1438-1656 SN - 1527-2648 VL - 23 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Melani, Giacomo A1 - Nagata, Yuki A1 - Saalfrank, Peter T1 - Vibrational energy relaxation of interfacial OH on a water-covered alpha-Al2O3(0001) surface BT - a non-equilibrium ab initio molecular dynamics study JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered alpha-Al2O3(0001) surface. In our NE-AIMD approach, after exciting selected O-H bonds their coupling to surface phonons and to the water adlayer is analyzed in detail, by following both the energy flow in time, as well as the time-evolution of Vibrational Density of States (VDOS) curves. The latter are obtained from Time-dependent Correlation Functions (TCFs) and serve as prototypical, generic representatives of time-resolved vibrational spectra. As most important results, (i) we find a few-picosecond lifetime of the excited modes and (ii) identify both hydrogen-bonded aluminols and water molecules in the adsorbed water layer as main dissipative channels, while the direct coupling to Al2O3 surface phonons is of minor importance on the timescales of interest. Our NE-AIMD/TCF methodology is powerful for complex adsorbate systems, in principle even reacting ones, and opens a way towards time-resolved vibrational spectroscopy. Y1 - 2021 U6 - https://doi.org/10.1039/d0cp03777j SN - 1463-9076 SN - 1463-9084 VL - 23 IS - 13 SP - 7714 EP - 7723 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wang, Zhenyu A1 - Fritsch, Daniel A1 - Berendts, Stefan A1 - Lerch, Martin A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Elucidation of the reaction mechanism for the synthesis of ZnGeN2 through Zn2GeO4 ammonolysis JF - Chemical science / RSC, Royal Society of Chemistry N2 - Ternary II-IV-N-2 materials have been considered as a promising class of materials that combine photovoltaic performance with earth-abundance and low toxicity. When switching from binary III-V materials to ternary II-IV-N-2 materials, further structural complexity is added to the system that may influence its optoelectronic properties. Herein, we present a systematic study of the reaction of Zn2GeO4 with NH3 that produces zinc germanium oxide nitrides, and ultimately approach stoichiometric ZnGeN2, using a combination of chemical analyses, X-ray powder diffraction and DFT calculations. Elucidating the reaction mechanism as being dominated by Zn and O extrusion at the later reaction stages, we give an insight into studying structure-property relationships in this emerging class of materials. Y1 - 2021 U6 - https://doi.org/10.1039/d1sc00328c SN - 2041-6539 VL - 12 IS - 24 SP - 8493 EP - 8500 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Saeedi Garakani, Sadaf A1 - Xie, Dongjiu A1 - Khorsand Kheirabad, Atefeh A1 - Lu, Yan A1 - Yuan, Jiayin T1 - Template-synthesis of a poly(ionic liquid)-derived Fe1-xS/nitrogen-doped porous carbon membrane and its electrode application in lithium-sulfur batteries JF - Materials advances N2 - This study deals with the facile synthesis of Fe1-xS nanoparticle-containing nitrogen-doped porous carbon membranes (denoted as Fe1-xS/N-PCMs) via vacuum carbonization of hybrid porous poly(ionic liquid) (PIL) membranes, and their successful use as a sulfur host material to mitigate the shuttle effect in lithium-sulfur (Li-S) batteries. The hybrid porous PIL membranes as the sacrificial template were prepared via ionic crosslinking of a cationic PIL with base-neutralized 1,1 '-ferrocenedicarboxylic acid, so that the iron source was molecularly incorporated into the template. The carbonization process was investigated in detail at different temperatures, and the chemical and porous structures of the carbon products were comprehensively analyzed. The Fe1-xS/N-PCMs prepared at 900 degrees C have a multimodal pore size distribution with a satisfactorily high surface area and well-dispersed iron sulfide nanoparticles to physically and chemically confine the LiPSs. The sulfur/Fe1-xS/N-PCM composites were then tested as electrodes in Li-S batteries, showing much improved capacity, rate performance and cycle stability, in comparison to iron sulfide-free, nitrogen-doped porous carbon membranes. Y1 - 2021 U6 - https://doi.org/10.1039/d1ma00441g SN - 2633-5409 VL - 2 IS - 15 SP - 5203 EP - 5212 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xu, Xun A1 - Nie, Yan A1 - Wang, Weiwei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells JF - MRS communications / a publication of the Materials Research Society N2 - Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. KW - Actuation KW - Antiviral KW - Biomaterial KW - COVID-19 KW - Shape memory Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00049-5 SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 4 SP - 425 EP - 431 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schulze, Nicole A1 - Koetz, Joachim T1 - Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte JF - Journal of dispersion science and technology N2 - This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets. KW - Kinetically controlled nanocrystal growth KW - nanotriangles KW - polyampholytes Y1 - 2016 U6 - https://doi.org/10.1080/01932691.2016.1220318 SN - 0193-2691 SN - 1532-2351 VL - 38 IS - 8 SP - 1073 EP - 1078 PB - Taylor & Francis CY - Philadelphia ER - TY - THES A1 - Margraf, Johannes T. T1 - Science-driven chemical machine learning Y1 - 2023 ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xu, Xun A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Rapid migration of mesenchymal stem cells (MSCs) on device surfaces could support in vivo tissue integration and might facilitate in vitro organoid formation. Here, polydopamine (PDA) is explored as a biofunctional coating to effectively promote MSC motility. It is hypothesized that PDA stimulates fibronectin deposition and in this way enhances integrin-mediated migration capability. The random and directional cell migration was investigated by time-lapse microscopy and gap closure assay respectively, and analysed with softwares as computational tools. A higher amount of deposited fibronectin was observed on PDA substrate, compared to the non-coated substrate. The integrin beta 1 activation and focal adhesion kinase (FAK) phosphorylation at Y397 were enhanced on PDA substrate, but the F-actin cytoskeleton was not altered, suggesting MSC migration on PDA was regulated by integrin initiated FAK signalling. This study strengthens the biofunctionality of PDA coating for regulating stem cells and offering a way of facilitating tissue integration of devices. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00091-4 SN - 2059-8521 VL - 6 IS - 31 SP - 739 EP - 744 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Saretia, Shivam A1 - Lendlein, Andreas T1 - Assessing the influence of temperature-memory creation on the degradation of copolyesterurethanes in ultrathin films JF - Advanced materials interfaces N2 - Copolyesterurethanes (PDLCLs) based on oligo(epsilon-caprolactone) (OCL) and oligo(omega-pentadecalactone) (OPDL) segments are biodegradable thermoplastic temperature-memory polymers. The temperature-memory capability in these polymers with crystallizable control units is implemented by a thermomechanical programming process causing alterations in the crystallite arrangement and chain organization. These morphological changes can potentially affect degradation. Initial observations on the macroscopic level inspire the hypothesis that switching of the controlling units causes an accelerated degradation of the material, resulting in programmable degradation by sequential coupling of functions. Hence, detailed degradation studies on Langmuir films of a PDLCL with 40 wt% OPDL content are carried out under enzymatic catalysis. The temperature-memory creation procedure is mimicked by compression at different temperatures. The evolution of the chain organization and mechanical properties during the degradation process is investigated by means of polarization-modulated infrared reflection absorption spectroscopy, interfacial rheology and to some extend by X-ray reflectivity. The experiments on PDLCL Langmuir films imply that degradability is not enhanced by thermal switching, as the former depends on the temperature during cold programming. Nevertheless, the thin film experiments show that the leaching of OCL segments does not induce further crystallization of the OPDL segments, which is beneficial for a controlled and predictable degradation. KW - block copolymers KW - degradation KW - Langmuir monolayers KW - rheology KW - temperature-memory polymers Y1 - 2021 U6 - https://doi.org/10.1002/admi.202001926 SN - 2196-7350 VL - 8 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sperlich, Eric A1 - Köckerling, Martin T1 - The double cluster compound [Nb6Cl14(MeCN)(4)] [Nb6Cl14(pyz)(4)].6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions JF - Zeitschrift für Naturforschung N2 - The synthesis and the crystal structure of the double cluster compound [Nb6Cl14(MeCN)(4)][Nb6Cl14(pyz)(4)]middot6CH(3)CN are described. The synthesis is based on a partial ligand exchange reaction, which proceeds upon dissolving [Nb6Cl14(pyz)(4)]middot2CH(2)Cl(2) in acetonitrile. The compound is built up of two discrete neutral cluster units, which consist of octahedra of Nb-6 atoms coordinated by 12 edge-bridging chlorido and two terminal chlorido ligands, and four acetonitrile ligands on one and four pyrazine ligands on the other cluster unit. Co-crystallized acetonitrile molecules are also present. The single-crystal structure determination has revealed a cluster arrangement in which the [Nb6Cl14(pyz)(4)] units are connected by (halogen) lone-pair-(pyrazine) pi interactions. These lead to chains of [Nb6Cl14(pyz)(4)] clusters. These chains are further connected to cluster layers by (nitrile-halogen) dipole-dipole interactions, in which the [Nb6Cl14(MeCN)(4)] and co-crystallized MeCN molecules are also involved. These cluster layers are arranged parallel to the crystallographic {011} plane. KW - cluster KW - crystal structure KW - dipole-dipole interaction KW - halide KW - lone-pair-pi interactions KW - niobium Y1 - 2023 U6 - https://doi.org/10.1515/znb-2023-0001 SN - 0932-0776 SN - 1865-7117 VL - 78 IS - 5 SP - 279 EP - 283 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Geiger, Christina A1 - Wang, Peixi A1 - Vagias, Apostolos N. A1 - Heger, Julian Eliah A1 - Haese, Martin A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Salt-dependent phase transition behavior of doubly thermoresponsive poly(sulfobetaine)-based diblock copolymer thin films JF - Langmuir : the ACS journal of surfaces and colloids / American Chemical Society N2 - The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(N-(3'-methacrylamidopropyl)-N, N-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature. The swelling kinetics in D2O vapor at 15 degrees C and the phase transition kinetics upon heating the swollen film to 60 degrees C and cooling back to 15 degrees C are followed with simultaneous time-of-flight neutron reflectometry and spectral reflectance measurements. These are complemented by Fourier transform infrared spectroscopy. The collapse temperature of PNIPMAM and the swelling temperature of PSBP are found at lower temperatures than in aqueous solution, which is attributed to the high polymer concentration in the thin-film geometry. Upon inclusion of sub-stoichiometric amounts (relative to the monomer units) of NaBr in the films, the water incorporation is significantly increased. This increase is mainly attributed to a salting-in effect on the zwitterionic PSBP block. Whereas the addition of NaBr notably shifts the swelling temperature of PSBP to lower temperatures, the collapse temperature of PNIPMAM remains unaffected by the presence of salt in the films. Y1 - 2021 U6 - https://doi.org/10.1021/acs.langmuir.1c01342 SN - 0743-7463 SN - 1520-5827 VL - 37 IS - 30 SP - 9179 EP - 9191 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pessanha, Tatiana A1 - Paschoalino, Waldemir J. A1 - Deroco, Patricia B. A1 - Kogikoski Junior, Sergio A1 - Moraes, Ana C. M. de A1 - Carvalho Castro de Silva, Cecilia de A1 - Kubota, Lauro T. T1 - Interfacial capacitance of graphene oxide films electrodes BT - Fundamental studies on electrolytes interface aiming (bio)sensing applications JF - Electroanalysis : an internatinal journal devoted to electroanalysis, sensors and bioelectronic devices N2 - The understanding of bidimensional materials dynamics and its electrolyte interface equilibrium, such as graphene oxide (GO), is critical for the development of a capacitive biosensing platform. The interfacial capacitance (C-i) of graphene-based materials may be tuned by experimental conditions such as pH optimization and cation size playing key roles at the enhancement of their capacitive properties allowing their application as novel capacitive biosensors. Here we reported a systematic study of C-i of multilayer GO films in different aqueous electrolytes employing electrochemical impedance spectroscopy for the application in a capacitive detection system. We demonstrated that the presence of ionizable oxygen-containing functional groups within multilayer GO film favors the interactions and the accumulation of cations in the structure of the electrodes enhancing the GO C-i in aqueous solutions, where at pH 7.0 (the best condition) the C-i was 340 mu F mg(-1) at -0.01 V vs Ag/AgCl. We also established that the hydrated cation radius affects the mobility and interaction with GO functional groups and it plays a critical role in the Ci, as demonstrated in the presence of different cations Na+=640 mu F mg(-1), Li+=575 mu F mg(-1) and TMA(+)=477 mu F mg(-1). As a proof-of-concept, the capacitive behaviour of GO was explored as biosensing platform for standard streptavidin-biotin systems. For this system, the C-i varied linearly with the log of the concentration of the targeting analyte in the range from 10 pg mL(-1) to 100 ng mL(-1), showing the promising applicability of capacitive GO based sensors for label-free biosensing. KW - Interfacial capacitance KW - Graphene oxide KW - Functional groups KW - Electrochemical impedance KW - Graphene derivates Y1 - 2021 U6 - https://doi.org/10.1002/elan.202100220 SN - 1521-4109 SN - 1040-0397 VL - 34 IS - 4 SP - 692 EP - 700 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Savatieiev, Oleksandr T1 - Carbon nitride semiconductors: properties and application as photocatalysts in organic synthesis N2 - Graphitic carbon nitrides (g-CNs) are represented by melon-type g-CN, poly(heptazine imides) (PHIs), triazine-based g-CN and poly(triazine imide) with intercalated LiCl (PTI/Li+Cl‒). These materials are composed of sp2-hybridized carbon and nitrogen atoms; C:N ratio is close to 3:4; the building unit is 1,3,5-triazine or tri-s-triazine; the building units are interconnected covalently via sp2-hybridized nitrogen atoms or NH-moieties; the layers are assembled into a stack via weak van der Waals forces as in graphite. Due to medium band gap (~2.7 eV) g-CNs, such as melon-type g-CN and PHIs, are excited by photons with wavelength ≤ 460 nm. Since 2009 g-CNs have been actively studied as photocatalysts in evolution of hydrogen and oxygen – two half-reactions of full water splitting, by employing corresponding sacrificial agents. At the same time application of g-CNs as photocatalysts in organic synthesis has been remaining limited to few reactions only. Cumulative Habilitation summarizes research work conducted by the group ‘Innovative Heterogeneous Photocatalysis’ between 2017-2023 in the field of carbon nitride organic photocatalysis, which is led by Dr. Oleksandr Savatieiev. g-CN photocatalysts activate molecules, i.e. generate their more reactive open-shell intermediates, via three modes: i) Photoinduced electron transfer (PET); ii) Excited state proton-coupled electron transfer (ES-PCET) or direct hydrogen atom transfer (dHAT); iii) Energy transfer (EnT). The scope of reactions that proceed via oxidative PET, i.e. one-electron oxidation of a substrate to the corresponding radical cation, are represented by synthesis of sulfonylchlorides from S-acetylthiophenols. The scope of reactions that proceed via reductive PET, i.e. one-electron reduction of a substrate to the corresponding radical anion, are represented by synthesis of γ,γ-dichloroketones from the enones and chloroform. Due to abundance of sp2-hybridized nitrogen atoms in the structure of g-CN materials, they are able to cleave X-H bonds in organic molecules and store temporary hydrogen atom. ES-PCET or dHAT mode of organic molecules activation to the corresponding radicals is implemented for substrates featuring relatively acidic X-H bonds and those that are characterized by low bond dissociation energy, such as C-H bond next to the heteroelements. On the other hand, reductively quenched g-CN carrying hydrogen atom reduces a carbonyl compound to the ketyl radical via PCET that is thermodynamically more favorable pathway compared to the electron transfer. The scope of these reactions is represented by cyclodimerization of α,β-unsaturated ketones to cyclopentanoles. g-CN excited state demonstrates complex dynamics with the initial formation of singlet excited state, which upon intersystem crossing produces triplet excited state that is characterized by the lifetime > 2 μs. Due to long lifetime, g-CN activate organic molecules via EnT. For example, g-CN sensitizes singlet oxygen, which is the key intermediate in the dehydrogenation of aldoximes to nitrileoxides. The transient nitrileoxide undergoes [3+2]-cycloaddition to nitriles and gives oxadiazoles-1,2,4. PET, ES-PCET and EnT are fundamental phenomena that are applied beyond organic photocatalysis. Hybrid composite is formed by combining conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with potassium poly(heptazine imide) (K-PHI). Upon PET, K-PHI modulated population of polarons and therefore conductivity of PEDOT:PSS. The initial state of PEDOT:PSS is recovered upon material exposure to O2. K-PHI:PEDOT:PSS may be applied in O2 sensing. In the presence of electron donors, such as tertiary amines and alcohols, and irradiation with light, K-PHI undergoes photocharging – the g-CN material accumulates electrons and charge-compensating cations. Such photocharged state is stable under anaerobic conditions for weeks, but at the same time it is a strong reductant. This feature allows decoupling in time light harvesting and energy storage in the form of electron-proton couples from utilization in organic synthesis. The photocharged state of K-PHI reduces nitrobenzene to aniline, and enables dimerization of α,β-unsaturated ketones to hexadienones in dark. N2 - Graphitische Kohlenstoffnitride (g-CNs) werden durch g-CN vom Melonen-Typ, Poly(heptazinimide) (PHIs), g-CN auf Triazinbasis und Poly(triazinimid) mit interkaliertem LiCl (PTI/Li+Cl-) repräsentiert. Diese Materialien bestehen aus sp2-hybridisierten Kohlenstoff- und Stickstoffatomen; das C:N-Verhältnis liegt nahe bei 3:4; das Grundgerüst ist 1,3,5-Triazin oder Tri-s-Triazin; die Grundgerüste sind kovalent über sp2-hybridisierte Stickstoffatome oder NH-Moleküle miteinander verbunden; die Schichten werden über schwache van-der-Waals-Kräfte wie in Graphit zu einem Stapel zusammengefügt. Aufgrund der mittleren Bandlücke (~2,7 eV) werden g-CNs, wie z. B. g-CN vom Melonen-Typ und PHIs, durch Photonen mit einer Wellenlänge ≤ 460 nm angeregt. Seit 2009 werden g-CNs aktiv als Photokatalysatoren für die Entwicklung von Wasserstoff und Sauerstoff - zwei Halbreaktionen der vollständigen Wasserspaltung - untersucht, indem entsprechende Opferstoffe eingesetzt werden. Gleichzeitig ist die Anwendung von g-CNs als Photokatalysatoren in der organischen Synthese auf wenige Reaktionen beschränkt geblieben. Die kumulative Habilitation fasst die Forschungsarbeiten zusammen, die von der Gruppe "Innovative heterogene Photokatalyse" zwischen 2017 und 2023 auf dem Gebiet der organischen Photokatalyse mit Kohlenstoffnitrid durchgeführt wurden, die von Dr. Oleksandr Savatieiev geleitet wird. g-CN-Photokatalysatoren aktivieren Moleküle, d. h. sie erzeugen ihre reaktiveren Zwischenprodukte mit offener Schale über drei Modi: i) photoinduzierter Elektronentransfer (PET); ii) protonengekoppelter Elektronentransfer im angeregten Zustand (ES-PCET) oder direkter Wasserstoffatomtransfer (dHAT); iii) Energietransfer (EnT). Der Bereich der Reaktionen, die über oxidativen PET ablaufen, d. h. die Ein-Elektronen-Oxidation eines Substrats zum entsprechenden Radikalkation, wird durch die Synthese von Sulfonylchloriden aus S-Acetylthiophenolen dargestellt. Der Bereich der Reaktionen, die über reduktive PET ablaufen, d. h. Reduktion eines Substrats mit einem Elektron zum entsprechenden radikalischen Anion, wird durch die Synthese von γ,γ-Dichloroketonen aus Enonen und Chloroform repräsentiert. Aufgrund der zahlreichen sp2-hybridisierten Stickstoffatome in der Struktur der g-CN-Materialien können sie X-H-Bindungen in organischen Molekülen spalten und temporäre Wasserstoffatome speichern. Der ES-PCET- oder dHAT-Modus der Aktivierung organischer Moleküle zu den entsprechenden Radikalen wird bei Substraten mit relativ sauren X-H-Bindungen und solchen, die sich durch eine niedrige Bindungsdissoziationsenergie auszeichnen, wie z. B. die C-H-Bindung neben den Heteroelementen, durchgeführt. Andererseits reduziert reduktiv gequenchtes g-CN, das ein Wasserstoffatom trägt, eine Carbonylverbindung über PCET zum Ketylradikal, was im Vergleich zum Elektronentransfer der thermodynamisch günstigere Weg ist. Der Umfang dieser Reaktionen wird durch die Cyclodimerisierung von α,β-ungesättigten Ketonen zu Cyclopentanolen dargestellt. Der angeregte Zustand von g-CN zeigt eine komplexe Dynamik mit der anfänglichen Bildung eines angeregten Singulett-Zustands, der beim Übergang zwischen den Systemen einen angeregten Triplett-Zustand erzeugt, der durch eine Lebensdauer von > 2 μs gekennzeichnet ist. Aufgrund der langen Lebensdauer aktivieren g-CN organische Moleküle über EnT. So sensibilisiert g-CN beispielsweise Singulett-Sauerstoff, der das wichtigste Zwischenprodukt bei der Dehydrierung von Aldoximen zu Nitriloxiden ist. Das transiente Nitriloxid unterliegt einer [3+2]-Cycloaddition zu Nitrilen und ergibt Oxadiazole-1,2,4. PET, ES-PCET und EnT sind grundlegende Phänomene, die über die organische Photokatalyse hinaus Anwendung finden. Hybridkomposit wird durch die Kombination von leitfähigen Polymeren wie Poly(3,4-ethylendioxythiophen)polystyrolsulfonat (PEDOT:PSS) mit Kaliumpoly(heptazinimid) (K-PHI) gebildet. Nach PET modulierte K-PHI die Population der Polaronen und damit die Leitfähigkeit von PEDOT:PSS. Der Ausgangszustand von PEDOT:PSS wird wiederhergestellt, wenn das Material O2 ausgesetzt wird. K-PHI:PEDOT:PSS kann für die O2-Sensorik verwendet werden. In Gegenwart von Elektronendonatoren, wie tertiären Aminen und Alkoholen, und bei Lichteinstrahlung wird K-PHI photogeladen - das g-CN-Material sammelt Elektronen und ladungsausgleichende Kationen an. Dieser photogeladene Zustand ist unter anaeroben Bedingungen wochenlang stabil, gleichzeitig ist er aber ein starkes Reduktionsmittel. Diese Eigenschaft ermöglicht die zeitliche Entkopplung von Lichtsammlung und Energiespeicherung in Form von Elektron-Protonen-Paaren von der Nutzung in der organischen Synthese. Der photogeladene Zustand von K-PHI reduziert Nitrobenzol zu Anilin und ermöglicht die Dimerisierung von α,β-ungesättigten Ketonen zu Hexadienonen im Dunkeln. KW - carbon nitride KW - photocatalysis KW - photochemistry KW - photocharging KW - organic synthesis Y1 - 2023 ER - TY - GEN A1 - Hechenbichler, Michelle A1 - Laschewsky, Andre A1 - Gradzielski, Michael T1 - Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1345 KW - polyacrylamide KW - water-soluble polymers KW - responsive systems KW - lower KW - critical solution temperature KW - polymer amphiphile Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-598378 SN - 0303-402X SN - 1435-1536 SN - 1866-8372 VL - 299 IS - 2 PB - Springer CY - Berlin; Heidelberg ER - TY - THES A1 - Hussein, Mahmoud T1 - Solvent engineering for highly-efficiency lead-free perovskite solar cells T1 - Lösungsmitteltechnik für hocheffiziente Zinn-Perowskit-Solarzellen N2 - Global warming, driven primarily by the excessive emission of greenhouse gases such as carbon dioxide into the atmosphere, has led to severe and detrimental environmental impacts. Rising global temperatures have triggered a cascade of adverse effects, including melting glaciers and polar ice caps, more frequent and intense heat waves disrupted weather patterns, and the acidification of oceans. These changes adversely affect ecosystems, biodiversity, and human societies, threatening food security, water availability, and livelihoods. One promising solution to mitigate the harmful effects of global warming is the widespread adoption of solar cells, also known as photovoltaic cells. Solar cells harness sunlight to generate electricity without emitting greenhouse gases or other pollutants. By replacing fossil fuel-based energy sources, solar cells can significantly reduce CO2 emissions, a significant contributor to global warming. This transition to clean, renewable energy can help curb the increasing concentration of greenhouse gases in the atmosphere, thereby slowing down the rate of global temperature rise. Solar energy’s positive impact extends beyond emission reduction. As solar panels become more efficient and affordable, they empower individuals, communities, and even entire nations to generate electricity and become less dependent on fossil fuels. This decentralized energy generation can enhance resilience in the face of climate-related challenges. Moreover, implementing solar cells creates green jobs and stimulates technological innovation, further promoting sustainable economic growth. As solar technology advances, its integration with energy storage systems and smart grids can ensure a stable and reliable energy supply, reducing the need for backup fossil fuel power plants that exacerbate environmental degradation. The market-dominant solar cell technology is silicon-based, highly matured technology with a highly systematic production procedure. However, it suffers from several drawbacks, such as: 1) Cost: still relatively high due to high energy consumption due to the need to melt and purify silicon, and the use of silver as an electrode, which hinders their widespread availability, especially in low-income countries. 2) Efficiency: theoretically, it should deliver around 29%; however, the efficiency of most of the commercially available silicon-based solar cells ranges from 18 – 22%. 3) Temperature sensitivity: The efficiency decreases with the increase in the temperature, affecting their output. 4) Resource constraints: silicon as a raw material is unavailable in all countries, creating supply chain challenges. Perovskite solar cells arose in 2011 and matured very rapidly in the last decade as a highly efficient and versatile solar cell technology. With an efficiency of 26%, high absorption coefficients, solution processability, and tunable band gap, it attracted the attention of the solar cells community. It represented a hope for cheap, efficient, and easily processable next-generation solar cells. However, lead toxicity might be the block stone hindering perovskite solar cells’ market reach. Lead is a heavy and bioavailable element that makes perovskite solar cells environmentally unfriendly technology. As a result, scientists try to replace lead with a more environmentally friendly element. Among several possible alternatives, tin was the most suitable element due to its electronic and atomic structure similarity to lead. Tin perovskites were developed to alleviate the challenge of lead toxicity. Theoretically, it shows very high absorption coefficients, an optimum band gap of 1.35 eV for FASnI3, and a very high short circuit current, which nominates it to deliver the highest possible efficiency of a single junction solar cell, which is around 30.1% according to Schockly-Quisser limit. However, tin perovskites’ efficiency still lags below 15% and is irreproducible, especially from lab to lab. This humble performance could be attributed to three reasons: 1) Tin (II) oxidation to tin (IV), which would happen due to oxygen, water, or even by the effect of the solvent, as was discovered recently. 2) fast crystallization dynamics, which occurs due to the lateral exposure of the P-orbitals of the tin atom, which enhances its reactivity and increases the crystallization pace. 3) Energy band misalignment: The energy bands at the interfaces between the perovskite absorber material and the charge selective layers are not aligned, leading to high interfacial charge recombination, which devastates the photovoltaic performance. To solve these issues, we implemented several techniques and approaches that enhanced the efficiency of tin halide perovskites, providing new chemically safe solvents and antisolvents. In addition, we studied the energy band alignment between the charge transport layers and the tin perovskite absorber. Recent research has shown that the principal source of tin oxidation is the solvent known as dimethylsulfoxide, which also happens to be one of the most effective solvents for processing perovskite. The search for a stable solvent might prove to be the factor that makes all the difference in the stability of tin-based perovskites. We started with a database of over 2,000 solvents and narrowed it down to a series of 12 new solvents that are suitable for processing FASnI3 experimentally. This was accomplished by looking into 1) the solubility of the precursor chemicals FAI and SnI2, 2) the thermal stability of the precursor solution, and 3) the potential to form perovskite. Finally, we show that it is possible to manufacture solar cells using a novel solvent system that outperforms those produced using DMSO. The results of our research give some suggestions that may be used in the search for novel solvents or mixes of solvents that can be used to manufacture stable tin-based perovskites. Due to the quick crystallization of tin, it is more difficult to deposit tin-based perovskite films from a solution than manufacturing lead-based perovskite films since lead perovskite is more often utilized. The most efficient way to get high efficiencies is to deposit perovskite from dimethyl sulfoxide (DMSO), which slows down the quick construction of the tin-iodine network that is responsible for perovskite synthesis. This is the most successful approach for achieving high efficiencies. Dimethyl sulfoxide, which is used in the processing, is responsible for the oxidation of tin, which is a disadvantage of this method. This research presents a potentially fruitful alternative in which 4-(tert-butyl) pyridine can substitute dimethyl sulfoxide in the process of regulating crystallization without causing tin oxidation to take place. Perovskite films that have been formed from pyridine have been shown to have a much-reduced defect density. This has resulted in increased charge mobility and better photovoltaic performance, making pyridine a desirable alternative for use in the deposition of tin perovskite films. The precise control of perovskite precursor crystallization inside a thin film is of utmost importance for optimizing the efficiency and manufacturing of solar cells. The deposition process of tin-based perovskite films from a solution presents difficulties due to the quick crystallization of tin compared to the more often employed lead perovskite. The optimal approach for attaining elevated efficiencies entails using dimethyl sulfoxide (DMSO) as a medium for depositing perovskite. This choice of solvent impedes the tin-iodine network’s fast aggregation, which plays a crucial role in the production of perovskite. Nevertheless, this methodology is limited since the utilization of dimethyl sulfoxide leads to the oxidation of tin throughout the processing stage. In this thesis, we present a potentially advantageous alternative approach wherein 4-(tert-butyl) pyridine is proposed as a substitute for dimethyl sulfoxide in regulating crystallization processes while avoiding the undesired consequence of tin oxidation. Films of perovskite formed using pyridine as a solvent have a notably reduced density of defects, resulting in higher mobility of charges and improved performance in solar applications. Consequently, the utilization of pyridine for the deposition of tin perovskite films is considered advantageous. Tin perovskites are suffering from an apparent energy band misalignment. However, the band diagrams published in the current body of research display contradictions, resulting in a dearth of unanimity. Moreover, comprehensive information about the dynamics connected with charge extraction is lacking. This thesis aims to ascertain the energy band locations of tin perovskites by employing the kelvin probe and Photoelectron yield spectroscopy methods. This thesis aims to construct a precise band diagram for the often-utilized device stack. Moreover, a comprehensive analysis is performed to assess the energy deficits inherent in the current energetic structure of tin halide perovskites. In addition, we investigate the influence of BCP on the improvement of electron extraction in C60/BCP systems, with a specific emphasis on the energy factors involved. Furthermore, transient surface photovoltage was utilized to investigate the charge extraction kinetics of frequently studied charge transport layers, such as NiOx and PEDOT as hole transport layers and C60, ICBA, and PCBM as electron transport layers. The Hall effect, KP, and TRPL approaches accurately ascertain the p-doping concentration in FASnI3. The results consistently demonstrated a value of 1.5 * 1017 cm-3. Our research findings highlight the imperative nature of autonomously constructing the charge extraction layers for tin halide perovskites, apart from those used for lead perovskites. The crystallization of perovskite precursors relies mainly on the utilization of two solvents. The first one dissolves the perovskite powder to form the precursor solution, usually called the solvent. The second one precipitates the perovskite precursor, forming the wet film, which is a supersaturated solution of perovskite precursor and in the remains of the solvent and the antisolvent. Later, this wet film crystallizes upon annealing into a full perovskite crystallized film. In our research context, we proposed new solvents to dissolve FASnI3, but when we tried to form a film, most of them did not crystallize. This is attributed to the high coordination strength between the metal halide and the solvent molecules, which is unbreakable by the traditionally used antisolvents such as Toluene and Chlorobenzene. To solve this issue, we introduce a high-throughput antisolvent screening in which we screened around 73 selected antisolvents against 15 solvents that can form a 1M FASnI3 solution. We used for the first time in tin perovskites machine learning algorithm to understand and predict the effect of an antisolvent on the crystallization of a precursor solution in a particular solvent. We relied on film darkness as a primary criterion to judge the efficacy of a solvent-antisolvent pair. We found that the relative polarity between solvent and antisolvent is the primary factor that affects the solvent-antisolvent interaction. Based on our findings, we prepared several high-quality tin perovskite films free from DMSO and achieved an efficiency of 9%, which is the highest DMSO tin perovskite device so far. N2 - Zinn ist eine der vielversprechendsten Alternativen zu Blei, um bleifreie Halogenidperowskite für die Optoelektronik herzustellen. Die Stabilität von Perowskiten auf Zinnbasis wird jedoch durch die Oxidation von Sn(II) zu Sn(IV) beeinträchtigt. Jüngste Arbeiten haben ergeben, dass Dimethylsulfoxid, eines der besten Lösungsmittel für die Verarbeitung von Perowskiten, die Hauptquelle für die Oxidation von Zinn ist. Die Suche nach einem stabilen Lösungsmittel könnte den Ausschlag für die Stabilität von Perowskiten auf Zinnbasis geben. Ausgehend von einer Datenbank mit über 2000 Lösungsmitteln haben wir eine Reihe von 12 neuen Lösungsmitteln identifiziert, die für die Verarbeitung von Formamidinium-Zinniodid-Perowskit (FASnI3) geeignet sind, indem wir 1) die Löslichkeit der Vorläuferchemikalien FAI und SnI2, 2) die thermische Stabilität der Vorläuferlösung und 3) die Möglichkeit zur Bildung von Perowskit experimentell untersucht haben. Schließlich demonstrieren wir ein neues Lösungsmittelsystem zur Herstellung von Solarzellen, das die auf DMSO basierenden Zellen übertrifft. Unsere Arbeit liefert Leitlinien für die weitere Identifizierung neuer Lösungsmittel oder Lösungsmittelmischungen zur Herstellung stabiler Perowskite auf Zinnbasis. Die genaue Steuerung der Kristallisation des Perowskit-Vorläufers in einer Dünnschicht ist entscheidend für die Effizienz und Produktion von Solarzellen. Die Abscheidung von Perowskit-Filmen auf Zinnbasis aus einer Lösung stellt aufgrund der schnellen Kristallisation von Zinn im Vergleich zu dem üblicherweise verwendeten Bleiperowskit eine Herausforderung dar. Die effektivste Methode zur Erzielung hoher Wirkungsgrade ist die Abscheidung von Perowskit aus Dimethylsulfoxid (DMSO), das den schnellen Aufbau des für die Perowskitbildung verantwortlichen Zinn-Jod-Netzwerks behindert. Dieser Ansatz hat jedoch einen Nachteil, da Dimethylsulfoxid während der Verarbeitung eine Zinnoxidation verursacht. In dieser Studie wird eine vielversprechende Alternative vorgestellt, bei der 4-(tert-Butyl)-pyridin Dimethylsulfoxid bei der Steuerung der Kristallisation ersetzen kann, ohne eine Zinnoxidation zu verursachen. Aus Pyridin abgeschiedene Perowskit-Filme weisen eine deutlich geringere Defektdichte auf, was zu einer erhöhten Ladungsbeweglichkeit und einer verbesserten photovoltaischen Leistung führt und es zu einer günstigen Wahl für die Abscheidung von Zinn-Perowskit-Filmen macht. Zinnperowskite haben sich als vielversprechender, umweltverträglicher Ersatz für Bleiperowskite erwiesen, vor allem wegen ihrer besseren optoelektronischen Eigenschaften und ihrer geringeren Bioverfügbarkeit. Dennoch gibt es mehrere Gründe, warum die Leistung von Zinnperowskiten nicht mit der von Bleiperowskiten verglichen werden kann. Einer dieser Gründe ist die Nichtübereinstimmung der Energiebänder zwischen dem Perowskit-Absorberfilm und den ladungstransportierenden Schichten (CTLs). Die in der vorhandenen Literatur dargestellten Banddiagramme sind jedoch uneinheitlich, was zu einem Mangel an Konsens führt. Außerdem ist das Verständnis der mit der Ladungsextraktion verbundenen Dynamik noch unzureichend. In dieser Studie sollen die Energiebandpositionen von Zinnperowskiten mit Hilfe der Kelvinsonde (KP) und der Photoelektronenausbeutespektroskopie (PYS) bestimmt werden. Ziel ist es, ein genaues Banddiagramm für den üblicherweise verwendeten Bauelementestapel zu erstellen. Darüber hinaus führen wir eine Diagnose der energetischen Unzulänglichkeiten durch, die im bestehenden energetischen Rahmen von Zinnhalogenid-Perowskiten vorhanden sind. Unser Ziel ist es, Folgendes zu klären den Einfluss von BCP auf die Verbesserung der Elektronenextraktion in C60/BCP-Systemen, wobei der Schwerpunkt auf den energetischen Aspekten liegt. Darüber hinaus haben wir die transiente Oberflächenphotospannung (tr-SPV) eingesetzt, um Einblicke in die Ladungsextraktionskinetik von allgemein bekannten CTLs zu gewinnen, einschließlich NiOx und PEDOT als Lochtransportschichten (HTLs) und C60, ICBA und PCBM als Elektronentransportschichten (ETLs). In diesem Kapitel verwenden wir den Halleffekt, KP- und TRPL-Techniken, um die genaue p-Dotierungskonzentration in FASnI3 zu bestimmen. Unsere Ergebnisse ergaben durchweg einen Wert von 1.5 * 1017 cm-3. Die Ergebnisse unserer Studie zeigen, dass es notwendig ist, die Ladungsextraktionsschichten von Zinnhalogenidperowskiten unabhängig von den Bleiperowskiten zu entwickeln. Die Kristallisation von Perowskit-Vorstufen beruht hauptsächlich auf der Verwendung von zwei Lösungsmitteln. Das erste löst das Perowskit-Pulver auf und bildet die Vorläuferlösung, die üblicherweise als Lösungsmittel bezeichnet wird. Mit dem zweiten wird der Perowskit-Precursor ausgefällt, wobei sich der Nassfilm bildet, der eine übersättigte Lösung des Perowskit-Precursors und der Reste des Lösungsmittels und des Antisolierungsmittels ist. Später kristallisiert dieser nasse Film beim Ausglühen zu einem vollständig kristallisierten Perowskit-Film. In unserem Forschungskontext haben wir neue Lösungsmittel vorgeschlagen, um FASnI3 aufzulösen, aber als wir versuchten, einen Film zu bilden, kristallisierten die meisten von ihnen nicht. Dies ist auf die hohe Koordinationsstärke zwischen dem Metallhalogenid und den Lösungsmittelmolekülen zurückzuführen, die von den traditionell verwendeten Antisolierungsmitteln wie Toluol und Chlorbenzol nicht aufgebrochen werden kann. Um dieses Problem zu lösen, haben wir ein Hochdurchsatz-Screening von Antisolventien durchgeführt, bei dem wir 73 ausgewählte Antisolventien mit 15 Lösungsmitteln verglichen haben, die eine 1M FASnI3-Lösung bilden können. Wir haben zum ersten Mal bei Zinnperowskiten einen Algorithmus für maschinelles Lernen verwendet, um die Wirkung eines Antisolvens auf die Kristallisation einer Vorläuferlösung in einem bestimmten Lösungsmittel zu verstehen und vorherzusagen. Wir stützten uns auf die Schwärzung des Films als primäres Kriterium zur Beurteilung der Wirksamkeit eines Lösungsmittel-Antisolierungsmittel-Paares. Wir fanden heraus, dass die relative Polarität zwischen Lösungsmittel und Antisolvent der wichtigste Faktor ist, der die Wechselwirkung zwischen Lösungsmittel und Antisolvent beeinflusst. Auf der Grundlage unserer Erkenntnisse haben wir mehrere hochwertige Zinn-Perowskit-Filme ohne DMSO hergestellt und einen Wirkungsgrad von 9 % erzielt, was die bisher höchste DMSO-Zinn-Perowskit-Vorrichtung darstellt. KW - perovskite solar cells KW - lead-free perovskites KW - tin perovskites KW - solar cells KW - perovskite KW - Perowskit-Solarzellen KW - photovoltaische Materialien KW - Solarzellen KW - Lösungsmittel KW - bleifreie Perowskit-Solarzellen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-630375 ER - TY - JOUR A1 - Wang, Peixi A1 - Geiger, Christina A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Reitenbach, Julija A1 - Liang, Suzhe A1 - Cubitt, Robert A1 - Henschel, Cristiane A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Poly(sulfobetaine)-based diblock copolymer thin films in water/acetone atmosphere: modulation of water hydration and co-nonsolvency-triggered film contraction JF - Langmuir : the ACS journal of surfaces and colloids N2 - The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied viaspectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2OorD2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2OorD2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, where as the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior. Y1 - 2022 U6 - https://doi.org/10.1021/acs.langmuir.2c00451 SN - 0743-7463 SN - 1520-5827 VL - 38 IS - 22 SP - 6934 EP - 6948 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kuntze, Kim A1 - Viljakka, Jani A1 - Titov, Evgenii A1 - Ahmed, Zafar A1 - Kalenius, Elina A1 - Saalfrank, Peter A1 - Priimagi, Arri T1 - Towards low-energy-light-driven bistable photoswitches BT - ortho-fluoroaminoazobenzenes JF - Photochemical & photobiological sciences / European Society for Photobiology N2 - Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.
[GRAPHICS]
. Y1 - 2022 U6 - https://doi.org/10.1007/s43630-021-00145-4 SN - 1474-905X SN - 1474-9092 VL - 21 IS - 2 SP - 159 EP - 173 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Xie, Dongjiu A1 - Xu, Yaolin A1 - Wang, Yonglei A1 - Pan, Xuefeng A1 - Härk, Eneli A1 - Kochovski, Zdravko A1 - Eljarrat, Alberto A1 - Müller, Johannes A1 - Koch, Christoph T. A1 - Yuan, Jiayin A1 - Lu, Yan T1 - Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries JF - ACS nano N2 - Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion. KW - poly(ionic liquid)s KW - nanovesicles KW - sulfur host KW - iron nitride KW - Li-S KW - batteries Y1 - 2022 U6 - https://doi.org/10.1021/acsnano.2c01992 SN - 1936-0851 SN - 1936-086X VL - 16 IS - 7 SP - 10554 EP - 10565 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Neffe, Axel T. A1 - Löwenberg, Candy A1 - Julich-Gruner, Konstanze K. A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Thermally-induced shape-memory behavior of degradable gelatin-based networks JF - International journal of molecular sciences N2 - Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) alpha,omega-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27-23 kPa and Young's moduli of 215-360 kPa at 4 degrees C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 degrees C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates R-r close to 100% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix. KW - shape-memory hydrogel KW - active polymer KW - biopolymer KW - mechanical KW - properties KW - degradation Y1 - 2021 U6 - https://doi.org/10.3390/ijms22115892 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 11 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Bochove, Bas van A1 - Grijpma, Dirk W. A1 - Lendlein, Andreas A1 - Seppälä, Jukka T1 - Designing advanced functional polymers for medicine JF - European polymer journal : EPJ Y1 - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2021.110573 SN - 0014-3057 VL - 155 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hwang, Jinyeon A1 - Zhang, Wuyong A1 - Youk, Sol A1 - Schutjajew, Konstantin A1 - Oschatz, Martin T1 - Understanding structure-property relationships under experimental conditions for the optimization of lithium-ion capacitor anodes based on all-carbon-composite materials JF - Energy technology : generation, conversion, storage, distribution N2 - The nanoscale combination of a conductive carbon and a carbon-based material with abundant heteroatoms for battery electrodes is a method to overcome the limitation that the latter has high affinity to alkali metal ions but low electronic conductivity. The synthetic protocol and the individual ratios and structures are important aspects influencing the properties of such multifunctional compounds. Their interplay is, herein, investigated by infiltration of a porous ZnO-templated carbon (ZTC) with nitrogen-rich carbon obtained by condensation of hexaazatriphenylene-hexacarbonitrile (HAT-CN) at 550-1000 degrees C. The density of lithiophilic sites can be controlled by HAT-CN content and condensation temperature. Lithium storage properties are significantly improved in comparison with those of the individual compounds and their physical mixtures. Depending on the uniformity of the formed composite, loading ratio and condensation temperature have different influence. Most stable operation at high capacity per used monomer is achieved with a slowly dried composite with an HAT-CN:ZTC mass ratio of 4:1, condensed at 550 degrees C, providing more than 400 mAh g(-1) discharge capacity at 0.1 A g(-1) and a capacity retention of 72% after 100 cycles of operation at 0.5 A g(-1) due to the homogeneity of the composite and high content of lithiophilic sites. KW - anodes KW - hybrid materials KW - nitrogen-doped carbon KW - porous carbon KW - lithium-ion capacitors Y1 - 2021 U6 - https://doi.org/10.1002/ente.202001054 SN - 2194-4296 VL - 9 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pan, Xuefeng A1 - Sarhan, Radwan Mohamed A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Taubert, Andreas A1 - Mei, Shilin A1 - Lu, Yan T1 - Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties JF - Nanoscale N2 - Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis. Y1 - 2022 U6 - https://doi.org/10.1039/d2nr01040b SN - 2040-3372 VL - 14 IS - 18 SP - 6888 EP - 6901 PB - RSC Publ. (Royal Society of Chemistry) CY - Cambridge ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Floyd, Thomas G. A1 - Song, Ji-Inn A1 - Hapeshi, Alexia A1 - Laroque, Sophie A1 - Hartlieb, Matthias A1 - Perrier, Sebastien T1 - Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency JF - Journal of materials chemistry : B, materials for biology and medicine N2 - The influence of polymer architecture of polycations on their ability to transfect mammalian cells is probed. Polymer bottle brushes with grafts made from partially hydrolysed poly(2-ethyl-2-oxazoline) are used while varying the length of the polymer backbone as well as the degree of hydrolysis (cationic charge content). Polyplex formation is investigated via gel electrophoresis, dye-displacement and dynamic light scattering. Bottle brushes show a superior ability to complex pDNA when compared to linear copolymers. Also, nucleic acid release was found to be improved by a graft architecture. Polyplexes based on bottle brush copolymers showed an elongated shape in transmission electron microscopy images. The cytotoxicity against mammalian cells is drastically reduced when a graft architecture is used instead of linear copolymers. Moreover, the best-performing bottle brush copolymer showed a transfection ability comparable with that of linear poly(ethylenimine), the gold standard of polymeric transfection agents, which is used as positive control. In combination with their markedly lowered cytotoxicity, cationic bottle brush copolymers are therefore shown to be a highly promising class of gene delivery vectors. Y1 - 2022 U6 - https://doi.org/10.1039/d2tb00490a SN - 2050-750X SN - 2050-7518 VL - 10 IS - 19 SP - 3696 EP - 3704 PB - Royal Society of Chemistry CY - London [u.a.] ER - TY - GEN A1 - Perovic, Milena A1 - Zeininger, Lukas A1 - Oschatz, Martin T1 - Immobilization of gold-on-carbon catalysts onto perfluorocarbon emulsion droplets to promote oxygen delivery in aqueous phase (D)-glucose oxidation T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The catalytic activity of metal nanoparticles (NPs) supported on porous supports can be controlled by various factors, such as NPs size, shape, or dispersivity, as well as their interaction with the support or the properties of the support material itself. However, these intrinsic properties are not solely responsible for the catalytic behavior of the overall reaction system, as the local environment and surface coverage of the catalyst with reactants, products, intermediates and other invloved species often play a crucial role in catalytic processes as well. Their contribution can be particularly critical in liquid-phase reactions with gaseous reactants that often suffer from low solubiltiy. One example is (D)-glucose oxidation with molecular oxygen over gold nanoparticles supported on porous carbons. The possibility to promote oxygen delivery in such aqueous phase oxidation reactions via the immobilization of heterogenous catalysts onto the interface of perfluorocarbon emulsion droplets is reported here. Gold-on-carbon catalyst particles can stabilize perfluorocarbon droplets in the aqueous phase and the local concentration of the oxidant in the surroundings of the gold nanoparticles accelerates the rate-limiting step of the reaction. Consequently, the reaction rate of a system with the optimal volume fraction of fluorocarbon is higher than a reference emulsion system without fluorocarbon, and the effect is observed even without additional oxygen supply. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1362 KW - perfluorocarbon emulsion KW - glucose oxidation KW - porous carbon KW - gas KW - solubility KW - pickering emulsion KW - liquid-phase catalysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569471 SN - 1867-3880 SN - 1867-3899 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Abbasi, Ali A1 - Xu, Yaolin A1 - Khezri, Ramin A1 - Etesami, Mohammad A1 - Lin, C. A1 - Kheawhom, Soorathep A1 - Lu, Yan T1 - Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries JF - Materials Today Sustainability N2 - Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail. KW - Ionic selectivity KW - Ionic conductivity KW - Gel polymer KW - Ion exchange KW - Porous KW - polymer Y1 - 2022 U6 - https://doi.org/10.1016/j.mtsust.2022.100126 SN - 2589-2347 VL - 18 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (−85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1365 KW - 2D-LC-MS/MS KW - Multi-method KW - Mycotoxins KW - Modified mycotoxins KW - Pesticides KW - Cereals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514795 SN - 1866-8372 IS - 143 ER - TY - GEN A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1366 KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570560 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Farhan, Muhammad A1 - Chaudhary, Deeptangshu A1 - Nöchel, Ulrich A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)] T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1375 KW - artificial muscles KW - fiber actuators KW - resistive heating KW - shape‐memory polymer actuators KW - soft robotics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571679 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Mayer, Dennis A1 - Picconi, David A1 - Robinson, Matthew S. A1 - Gühr, Markus T1 - Experimental and theoretical gas-phase absorption spectra of thionated uracils JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments. KW - Thiouracil KW - Uracil KW - UV-VIS Spectroscopy KW - Excited-state calculations; KW - TD-DFT KW - Gas phase Y1 - 2022 U6 - https://doi.org/10.1016/j.chemphys.2022.111500 SN - 0301-0104 VL - 558 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zimmermann, Marc A1 - Stomps, Benjamin René Harald A1 - Schulte-Osseili, Christine A1 - Grigoriev, Dmitry A1 - Ewen, Dirk A1 - Morgan, Andrew A1 - Böker, Alexander T1 - Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn JF - Textile Research Journal N2 - Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed. KW - anchor peptides KW - organic dye pigments KW - coloring agents KW - polypropylene KW - yarns Y1 - 2020 U6 - https://doi.org/10.1177/0040517520932231 SN - 0040-5175 SN - 1746-7748 VL - 91 IS - 1-2 SP - 28 EP - 39 PB - Sage Publ. CY - London ER - TY - GEN A1 - Zimmermann, Marc A1 - Stomps, Benjamin René Harald A1 - Schulte-Osseili, Christine A1 - Grigoriev, Dmitry A1 - Ewen, Dirk A1 - Morgan, Andrew A1 - Böker, Alexander T1 - Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1380 KW - anchor peptides KW - organic dye pigments KW - coloring agents KW - polypropylene yarns Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548913 SN - 1866-8372 IS - 1-2 ER - TY - GEN A1 - Wessig, Pablo A1 - John, Leonard A1 - Sperlich, Eric A1 - Kelling, Alexandra T1 - Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1381 KW - fluorescent dyes KW - heterocycles KW - photophysics KW - stokes shift KW - sulfur Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-566241 SN - 1866-8372 IS - 3 ER - TY - GEN A1 - Bourgat, Yannick A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Menzel, Henning T1 - Enzyme degradable polymersomes from chitosan-g-[poly-l-lysine-block-epsilon-caprolactone] copolymer T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The scope of this study includes the synthesis of chitosan-g-[peptide-poly-epsilon-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-epsilon-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1382 KW - chitosan KW - click chemistry KW - drug delivery system KW - enzyme KW - polymersomes KW - poly‐ ε ‐ caprolactone Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-566584 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1385 KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570614 SN - 1866-8372 IS - 3 ER - TY - GEN A1 - Wang, Xuepu A1 - Sperling, Marcel A1 - Reifarth, Martin A1 - Böker, Alexander T1 - Shaping metallic nanolattices BT - Design by microcontact printing from wrinkled stamps T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A method for the fabrication of well-defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl-functional poly(2-vinyl pyridine) then provides the basic pattern for the deposition of citrate-stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface-decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro-scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost-effective, and scalable surface-patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top-down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1391 KW - gold nanoparticle assembly KW - hydroxyl-functional poly(2-vinyl pyridine) KW - metallic nanolattices KW - microcontact printing KW - oligomeric polydimethylsiloxane KW - polydimethylsiloxane wrinkles KW - wrinkled stamps Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514341 SN - 1866-8372 IS - 11 ER - TY - JOUR A1 - Ilic, Ivan A1 - Schutjajew, Konstantin A1 - Zhang, Wuyong A1 - Oschatz, Martin T1 - Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes JF - Carbon : an international journal sponsored by the American Carbon Society N2 - Lithium-ion batteries have revolutionized battery technology. However, the scarcity of lithium in nature is driving the search for alternatives. For that reason, sodium-ion batteries have attracted increasing attention in recent years. The main obstacle to their development is the anode as, unlike for lithium-ion batteries, graphite cannot be used due to the inability to form stoichiometrically useful intercalation compounds with sodium. A promising candidate for sodium storage is hard carbon a form of nongraphitisable carbon, that can be synthesized from various precursor materials. Processing of hard carbons is often done by using mechanochemical treatments. Although it is generally accepted and often observed that they can influence the porosity of hard carbons, their effect on battery performance not well understood. Here, the changes in porosity occurring during ball milling are elucidated and related to the properties of hard carbons in sodium storage. Analysis by combined gas physisorption and small angle X-ray scattering shows that porosity changes during ball milling with a significant increase of the open porosity, unsuitable for reversible sodium storage, and decrease of the closed porosity, suitable for reversible sodium storage. While pristine hard carbon can store 58.5 mAh g(-1) in the closed pores, upon 5 h of mechanical treatment in a ball mill it can only store 35.5 mAh g(-1). The obtained results are furthermore pointing towards the disputed "intercalation-adsorption" mechanism. KW - Hard carbons KW - Sodium-ion batteries KW - Anodes KW - Microporosity KW - Ball milling Y1 - 2022 U6 - https://doi.org/10.1016/j.carbon.2021.09.063 SN - 0008-6223 SN - 1873-3891 VL - 186 SP - 55 EP - 63 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Gupta, Banshi D. A1 - Pathak, Anisha A1 - Shrivastav, Anand T1 - Optical Biomedical Diagnostics Using Lab-on-Fiber Technology BT - a review JF - Photonics : open access journal N2 - Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted. KW - fiber optic sensors KW - synthesis KW - interferometry KW - fluorescence KW - SERS KW - SPR KW - immunosensors KW - enzymatic sensors KW - molecular imprinted polymers Y1 - 2022 U6 - https://doi.org/10.3390/photonics9020086 SN - 2304-6732 VL - 9 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akampurira, Denis A1 - Akala, Hoseah M. A1 - Derese, Solomon A1 - Heydenreich, Matthias A1 - Yenesew, Abiy T1 - A new C-C linked benzophenathridine-2-quinoline dimer, and the antiplasmodial activity of alkaloids from Zanthoxylum holstzianum JF - Natural product research N2 - The CH2Cl2/MeOH (1:1) extract of Zanthoxylum holstzianum stem bark showed good antiplasmodial activity (IC50 2.5 +/- 0.3 and 2.6 +/- 0.3 mu g/mL against the W2 and D6 strains of Plasmodium falciparum, respectively). From the extract five benzophenanthridine alkaloids [8-acetonyldihydrochelerythrine (1), nitidine (2), dihydrochelerythine (3), norchelerythrine (5), arnottianamide (8)]; a 2-quinolone alkaloid [N-methylflindersine (4)]; a lignan [4,4 '-dihydroxy-3,3 '-dimethoxylignan-9,9 '-diyl diacetate (7)] and a dimer of a benzophenanthridine and 2-quinoline [holstzianoquinoline (6)] were isolated. The CH2Cl2/MeOH (1:1) extract of the root bark afforded 1, 3-6, 8, chelerythridimerine (9) and 9-demethyloxychelerythrine (10). Holstzianoquinoline (6) is new, and is the second dimer linked by a C-C bond of a benzophenanthridine and a 2-quinoline reported thus far. The compounds were identified based on spectroscopic evidence. Amongst five compounds (1-5) tested against two strains of P. falciparum, nitidine (IC50 0.11 +/- 0.01 mu g/mL against W2 and D6 strains) and norchelerythrine (IC50 value of 0.15 +/- 0.01 mu g/mL against D6 strain) were the most active. KW - Antiplasmodial KW - benzophenanthridine alkaloid KW - holstzianoquinoline; KW - rutaceae KW - Zanthoxylum holstzianum Y1 - 2022 U6 - https://doi.org/10.1080/14786419.2022.2034810 SN - 1478-6419 SN - 1478-6427 VL - 37 IS - 13 SP - 2161 EP - 2171 PB - Taylor & Francis CY - London [u.a.] ER - TY - JOUR A1 - Kreuzer, Lucas A1 - Lindenmeir, Christoph A1 - Geiger, Christina A1 - Widmann, Tobias A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Poly(sulfobetaine) versus poly(N-isopropylmethacrylamide) BT - co-nonsolvency-type behavior of thin films in a water/methanol atmosphere JF - Macromolecules : a publication of the American Chemical Society N2 - The swelling and co-nonsolvency behaviors in pure H2O and in a mixed H2O/CH3OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H2O vapor is followed. Subsequently, CH3OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H2O swelling and subsequent exposure to CH3OH, not only with respect to the amounts of absorbed water and CH3OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state. Y1 - 2021 U6 - https://doi.org/10.1021/acs.macromol.0c02281 SN - 0024-9297 SN - 1520-5835 VL - 54 IS - 3 SP - 1548 EP - 1556 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Kar, Manaswita A1 - Körzdörfer, Thomas T1 - Computational high throughput screening of inorganic cation based halide perovskites for perovskite only tandem solar cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We search for homovalent alternatives for A, B, and X-ions in ABX(3) type inorganic halide perovskites suitable for tandem solar cell applications. We replace the conventional A-site organic cation CH3NH3, by 3 inorganic cations, Cs, K, and Rb, and the B site consists of metals; Cd, Hg, Ge, Pb, and Sn This work is built on our previous high throughput screening of hybrid perovskite materials (Kar et al 2018 J. Chem. Phys. 149, 214701). By performing a systematic screening study using Density Functional Theory (DFT) methods, we found 11 suitable candidates; 2 Cs-based, 3 K-based and 6 Rb-based that are suitable for tandem solar cell applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1438 KW - inorganic perovskites KW - tandem solar cells KW - density functional theory Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516831 SN - 1866-8372 IS - 5 ER - TY - GEN A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xua, Xun A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric sheet actuators with programmable bioinstructivity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1441 KW - reversible shape-memory actuator KW - mesenchymal stem cells KW - calcium influx KW - HDAC1 KW - RUNX2 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515490 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xua, Xun A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric sheet actuators with programmable bioinstructivity JF - PNAS N2 - Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects. KW - reversible shape-memory actuator KW - mesenchymal stem cells KW - calcium influx KW - HDAC1 KW - RUNX2 Y1 - 2020 U6 - https://doi.org/10.1073/pnas.1910668117 SN - 1091-6490 VL - 117 IS - 4 SP - 1895 EP - 1901 PB - National Academy of Sciences CY - Washington, DC ER - TY - JOUR A1 - Saretia, Shivam A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Degradation kinetics of oligo(ε-caprolactone) ultrathin films BT - Influence of crystallinity JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - The potential of using crystallinity as morphological parameter to control polyester degradation in acidic environments is explored in ultrathin films by Langmuir technique. Films of hydroxy or methacrylate end-capped oligo(epsilon-caprolactone) (OCL) are prepared at the air-water interface as a function of mean molecular area (MMA). The obtained amorphous, partially crystalline or highly crystalline ultrathin films of OCL are hydrolytically degraded at pH similar to 1.2 on water surface or on silicon surface as-transferred films. A high crystallinity reduces the hydrolytic degradation rate of the films on both water and solid surfaces. Different acceleration rates of hydrolytic degradation of semi-crystalline films are achieved either by crystals complete melting, partially melting, or by heating them below their melting temperatures. Semi-crystalline OCL films transferred via water onto a solid surface retain their crystalline morphology, degrade in a controlled manner, and are of interest as thermoswitchable coatings for cell substrates and medical devices. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00067-4 SN - 2059-8521 VL - 6 IS - 33 SP - 790 EP - 795 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Yue, Yanhua A1 - Melani, Giacomo A1 - Kirsch, Harald A1 - Paarmann, Alexander A1 - Saalfrank, Peter A1 - Campen, Richard Kramer A1 - Tong, Yujin T1 - Structure and Reactivity of a-Al2O3(0001) Surfaces: How Do Al-I and Gibbsite-like Terminations Interconvert? JF - The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis N2 - The alpha-Al2O3(0001) surface has been extensively studied because of its significance in both fundamental research and application. Prior work suggests that in ultra-high-vacuum (UHV), in the absence of water, the so-called Al-I termination is thermodynamically favored, while in ambient, in contact with liquid water, a Gibbsite-like layer is created. While the view of the alpha- Al2O3(0001)/H2O(l) interface appears relatively clear in theory, experimental characterization of this system has resulted in estimates of surface acidity, i.e., isoelectric points, that differ by 4 pH units and surface structure that in some reports has non-hydrogen-bonded surface aluminol (Al-OH) groups and in others does not. In this study, we employed vibrational sum frequency spectroscopy (VSFS) and density functional theory (DFT) simulation to study the surface phonon modes of the differently terminated alpha-Al2O3(0001) surfaces in both UHV and ambient. We find that, on either water dosing of the Al-I in UHV or heat-induced dehydroxylation of the Gibbsite-like in ambient, the surfaces do not interconvert. This observation offers a new explanation for disagreements in prior work on the alpha-Al2O3(0001)/liquid water interface -different preparation methods may create surfaces that do not interconvert-and shows that the surface phonon spectral response offers a novel probe of interfacial hydrogen bonding structure. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpcc.2c03743 SN - 1932-7447 SN - 1932-7455 VL - 126 IS - 31 SP - 13467 EP - 13476 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tarazona Lizcano, Natalia Andrea A1 - Machatschek, Rainhard Gabriel A1 - Balcucho, Jennifer A1 - Castro-Mayorga, Jinneth Lorena A1 - Saldarriaga, Juan Francisco A1 - Lendlein, Andreas T1 - Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept JF - MRS energy & sustainability : science & technology & socio-economics & policy N2 - The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation.
Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities. KW - biomaterial KW - degradable KW - functional KW - life cycle assessment KW - renewable KW - sustainability Y1 - 2022 U6 - https://doi.org/10.1557/s43581-021-00015-7 SN - 2329-2229 SN - 2329-2237 VL - 9 IS - 1 SP - 28 EP - 34 PB - Springer Nature CY - London ER - TY - JOUR A1 - Folikumah, Makafui Y. A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Reaction behaviour of peptide-based single thiol-thioesters exchange reaction substrate in the presence of externally added thiols JF - MRS communications / a publication of the Materials Research Society N2 - Identification of patterns in chemical reaction pathways aids in the effective design of molecules for specific applications. Here, we report on model reactions with a water-soluble single thiol-thioester exchange (TTE) reaction substrate, which was designed taking in view biological and medical applications. This substrate consists of the thio-depsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) and does not yield foul-smelling thiol exchange products when compared with aromatic thiol containing single TTE substrates. TDP generates an alpha,omega-dithiol crosslinker in situ in a 'pseudo intramolecular' TTE. Competitive intermolecular TTE of TDP with externally added "basic" thiols increased the crosslinker concentration whilst "acidic" thiols decreased its concentration. TDP could potentially enable in situ bioconjugation and crosslinking applications. KW - Biomaterials KW - Biomimetic KW - Mass spectrometry KW - Nuclear magnetic resonance KW - (NMR) Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00041-z SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 4 SP - 402 EP - 410 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Heydenreich, Matthias A1 - Shainyan, Bagrat A. T1 - At the experimental limit of the NMR conformational analysis BT - Si-29 and C-13 NMR study of the conformational equilibrium of 1-phenyl-1-tert-butylsilacyclohexane JF - Organic letters N2 - The low temperature (95 K) NMR study of 1-Ph-1-t-Bu-silacyclohexane (1) showed the conformational equilibrium to be extremely one-sided toward thePh(ax),t-Bueq conformer. The barrier to interconversion has been measured (4.2-4.6 kcal/mol) and the conformational equilibrium [Delta nu = 1990.64 ppm (Si-29), 618.9 ppm (C-13), 1-Ph-ax:1-Pheq = (95.6-96.6%):(3.4-4.4%), K = 25 +/- 3, Delta G degrees = -RT ln K = 0.58-0.63 kcal/mol] analyzed. The assignment and quantification of the NMR signals is supported by MP2 and DFT calculations. Y1 - 2021 U6 - https://doi.org/10.1021/acs.orglett.0c03878 SN - 1523-7060 SN - 1523-7052 VL - 23 IS - 2 SP - 405 EP - 409 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mullan, Thomas A1 - Maschio, Lorenzo A1 - Saalfrank, Peter A1 - Usvyat, Denis T1 - Reaction barriers on non-conducting surfaces beyond periodic local MP2 BT - Diffusion of hydrogen on alpha-Al2O3 (0001) as a test case JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The quest for "chemical accuracy" is becoming more and more demanded in the field of structure and kinetics of molecules at solid surfaces. In this paper, as an example, we focus on the barrier for hydrogen diffusion on a alpha-Al2O3 (0001) surface, aiming for a couple cluster singles, doubles, and perturbative triples [CCSD(T)]-level benchmark. We employ the density functional theory (DFT) optimized minimum and transition state structures reported by Heiden, Usvyat, and Saalfrank [J. Phys. Chem. C 123, 6675 (2019)]. The barrier is first evaluated at the periodic Hartree-Fock and local Moller-Plesset second-order perturbation (MP2) level of theory. The possible sources of errors are then analyzed, which includes basis set incompleteness error, frozen core, density fitting, local approximation errors, as well as the MP2 method error. Using periodic and embedded fragment models, corrections to these errors are evaluated. In particular, two corrections are found to be non-negligible (both from the chemical accuracy perspective and at the scale of the barrier value of 0.72 eV): the correction to the frozen core-approximation of 0.06 eV and the CCSD(T) correction of 0.07 eV. Our correlated wave function results are compared to barriers obtained from DFT. Among the tested DFT functionals, the best performing for this barrier is B3LYP-D3. Y1 - 2022 U6 - https://doi.org/10.1063/5.0082805 SN - 0021-9606 SN - 1089-7690 VL - 156 IS - 7 PB - AIP Publishing CY - Melville ER - TY - THES A1 - Martínez Guajardo, Alejandro T1 - New zwitterionic polymers for antifouling applications T1 - Neue zwitterionische Polymere für Antifouling-Anwendungen N2 - The remarkable antifouling properties of zwitterionic polymers in controlled environments are often counteracted by their delicate mechanical stability. In order to improve the mechanical stabilities of zwitterionic hydrogels, the effect of increased crosslinker densities was thus explored. In a first approach, terpolymers of zwitterionic monomer 3-[N -2(methacryloyloxy)ethyl-N,N-dimethyl]ammonio propane-1-sulfonate (SPE), hydrophobic monomer butyl methacrylate (BMA), and photo-crosslinker 2-(4-benzoylphenoxy)ethyl methacrylate (BPEMA) were synthesized. Thin hydrogel coatings of the copolymers were then produced and photo-crosslinked. Studies of the swollen hydrogel films showed that not only the mechanical stability but also, unexpectedly, the antifouling properties were improved by the presence of hydrophobic BMA units in the terpolymers. Based on the positive results shown by the amphiphilic terpolymers and in order to further test the impact that hydrophobicity has on both the antifouling properties of zwitterionic hydrogels and on their mechanical stability, a new amphiphilic zwitterionic methacrylic monomer, 3-((2-(methacryloyloxy)hexyl)dimethylammonio)propane-1-sulfonate (M1), was synthesized in good yields in a multistep synthesis. Homopolymers of M1 were obtained by free-radical polymerization. Similarly, terpolymers of M1, zwitterionic monomer SPE, and photo-crosslinker BPEMA were synthesized by free-radical copolymerization and thoroughly characterized, including its solubilities in selected solvents. Also, a new family of vinyl amide zwitterionic monomomers, namely 3-(dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propane-1-sulfonate (M2), 4-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)butane-1-sulfonate (M3), and 3-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propyl sulfate (M4), together with the new photo-crosslinker 4-benzoyl-N-vinylbenzamide (M5) that is well-suited for copolymerization with vinylamides, are introduced within the scope of the present work. The monomers are synthesized with good yields developing a multistep synthesis. Homopolymers of the new vinyl amide zwitterionic monomers are obtained by free-radical polymerization and thoroughly characterized. From the solubility tests, it is remarkable that the homopolymers produced are fully soluble in water, evidence of their high hydrophilicity. Copolymerization of the vinyl amide zwitterionic monomers, M2, M3, and M4 with the vinyl amide photo-crosslinker M5 proved to require very specific polymerization conditions. Nevertheless, copolymers were successfully obtained by free-radical copolymerization under appropriate conditions. Moreover, in an attempt to mitigate the intrinsic hydrophobicity introduced in the copolymers by the photo-crosslinkers, and based on the proven affinity of quaternized diallylamines to copolymerize with vinyl amides, a new quaternized diallylamine sulfobetaine photo-crosslinker 3-(diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propane-1-sulfonate (M6) is synthesized. However, despite a priori promising copolymerization suitability, copolymerization with the vinyl amide zwitterionic monomers could not be achieved. N2 - Die hervorragenden Antifouling-Eigenschaften zwitterionischer Polymere in kontrollierten Bedingungen werden häufig durch ihre geringe mechanische Stabilität beeinträchtigt. Um die mechanische Eigenschaften zwitterionischer Hydrogele zu verbessern, wurde daher der Effekt einer erhöhten Vernetzungsdichte untersucht. In einem ersten Ansatz wurden Terpolymere aus dem zwitterionischen Monomer 3-[N -2(Methacryloyloxy)ethyl-N,N-dimethyl]ammonio propan-1-sulfonat (SPE), dem hydrophoben Monomer Butylmethacrylat (BMA) und dem Photovernetzer 2-(4-Benzoylphenoxy)ethylmethacrylat (BPEMA) synthetisiert. Daraufhin wurden dünne Beschichtungen der Copolymere hergestellt und photovernetzt. Die Untersuchung der gequollenen Hydrogelfilme zeigte, dass nicht nur die mechanischen Eigenschaften, sondern überraschenderweise auch die Antifouling-Eigenschaften der Hydrogele durch den Einbau von hydrophoben BMA-Einheiten in die Terpolymere verbessert wurden. Aufgrund der positiven Ergebnisse der amphiphilen Terpolymere und um die Auswirkungen der Hydrophobie sowohl auf die Antifouling- als auch auf die mechanische Eigenschaften der zwitterionischen Hydrogele zu testen, wurde ein neues amphiphiles zwitterionisches Methacrylat, nämlich 3-((2-(Methacryloyloxy)hexyl)dimethylammonio)propan-1-sulfonat (M1), in guter Ausbeute synthetisiert. Homopolymere von M1 wurden durch radikalische Polymerisation erhalten. In ähnlicher Weise wurden Terpolymere aus M1, dem zwitterionischen Monomer SPE und dem Photovernetzer BPEMA durch radikalische Copolymerisation synthetisiert und gründlich charakterisiert, einschließlich ihrer Löslichkeiten in ausgewählten Lösungsmitteln. Außerdem wurde im Rahmen der vorliegenden Arbeit eine neue Familie von zwitterionischen Vinylamidmonomeren, nämlich 3-(Dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propan-1-sulfonat (M2), 4-(Dimethyl(2-(N -vinylacetamido)ethyl)ammonio)butan-1-sulfonat (M3) und 3-(Dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propylsulfat (M4), zusammen mit einem geeigneten Vinylamid-Photovernetzer, nämlich 4-Benzoyl-N -vinylbenzamide (M5) entwickelt. Die Monomere wurden in einer Mehrstufen-Synthese mit guten Ausbeuten synthetisiert. Homopolymere der neuen zwitterionischen Vinylamidmonomere wurden durch radikalische Polymerisation erhalten und eingehend charakterisiert. Die Löslichkeitstests zeigen, dass die hergestellten Homopolymere bemerkenswerterweise vollständig in reinem Wasser löslich sind, was ihre hohe Hydrophilie beweist. Die Copolymerisation der zwitterionischen Vinylamidmonomere M2, M3 und M4 mit dem Vinylamid-Photovernetzer M5 erwies sich als schwierig. Die Copolymere lassen sich dennoch unter sehr spezifische Bedingungen durch radikalische Copolymerisation herstellen. Des Weiteren, um die durch die Photovernetzer in die Copolymere eingebrachte inhärente Hydrophobie zu mindern und aufgrund ihrer nachgewiesenen Affinität zur Copolymerisation mit Vinylamiden, wurde ein neuer quaternisierter Diallylaminsulfobetain-Photovernetzer 3-(Diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propan-1-sulfonat (M6) synthetisiert. Trotz a priori vielversprechender Copolymerisationseignung konnte jedoch keine Copolymerisation mit den zwitterionischen Vinylamidmonomeren erreicht werden. KW - antifouling KW - Antifouling KW - copolymers KW - Copolymere KW - hydrogels KW - Hydrogele KW - zwitterions KW - Zwitterionen KW - synthesis KW - Synthese Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-626820 ER - TY - JOUR A1 - Mawire, Phillip A1 - Mozirandi, Winnie A1 - Heydenreich, Matthias A1 - Chi, Godloves Fru A1 - Mukanganyama, Stanley T1 - Isolation and antimicrobial activities of phytochemicals from Parinari curatellifolia (Chrysobalanaceae) JF - Advances in pharmacological and pharmaceutical sciences N2 - The widespread use of antimicrobial agents to treat infectious diseases has led to the emergence of antibiotic resistant pathogens. Plants have played a central role in combating many ailments in humans, and Parinari curatellifolia has been used for medicinal purposes. Seven extracts from P. curatellifolia leaves were prepared using serial exhaustive extraction of nonpolar to polar solvents. The microbroth dilution method was used to evaluate antimicrobial bioactivities of extracts. Five of the extracts were significantly active against at least one test microbe. Mycobacterium smegmatis was the most susceptible to most extracts. The methanol and ethanol extracts were the most active against M. smegmatis with an MIC of 25 mu g/mL. The hexane extract was the most active against Candida krusei with an MIC of 25 mu g/mL. None of the extracts significantly inhibited growth of Klebsiella pneumoniae and Staphylococcus aureus. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. TLC analyses was carried out for pooling fractions of similar profiles. A total of 43 pools were obtained from 428 fractions. Pools 7 and 10 were selected for further isolation of single compounds. Four compounds, Pc4963r, Pc4962w, Pc6978p, and Pc6978o, were isolated. Evaluation of antimicrobial activities of Pc4963r, Pc4962w, and Pc6978p showed that the compounds were most active against C. krusei with MFC values ranging from 50 to 100 mu g/mL. Only Pc6978p was shown to be pure. Using spectroscopic analyses, the structure of Pc6978p was determined to be beta-sitosterol. The antifungal effects of beta-sitosterol were evaluated against C. krusei in vitro and on fabrics. Results showed that beta-sitosterol reduced the growth of C. krusei attached to Mendy fabric by 83%. Therefore, P. curatellifolia can be a source of lead compounds for prospective development of novel antimicrobial agents. Further work needs to be done to improve the antifungal activity of the isolated compound using quantitative structure-activity relationships. Y1 - 2021 U6 - https://doi.org/10.1155/2021/8842629 SN - 2633-4682 SN - 2633-4690 PB - Hindawi CY - London ER - TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Hoffmann, Falk A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics JF - Journal of materials research : JMR N2 - The degradation of polymers is described by mathematical models based on bond cleavage statistics including the decreasing probability of chain cuts with decreasing average chain length. We derive equations for the degradation of chains under a random chain cut and a chain end cut mechanism, which are compared to existing models. The results are used to predict the influence of internal molecular parameters. It is shown that both chain cut mechanisms lead to a similar shape of the mass or molecular mass loss curve. A characteristic time is derived, which can be used to extract the maximum length of soluble fragments l of the polymer. We show that the complete description is needed to extract the degradation rate constant k from the molecular mass loss curve and that l can be used to design polymers that lose less mechanical stability before entering the mass loss phase. KW - Modeling KW - Degradable KW - Polymer KW - Molecular weight KW - Simulation Y1 - 2022 U6 - https://doi.org/10.1557/s43578-022-00495-4 SN - 0884-2914 SN - 2044-5326 VL - 37 IS - 5 SP - 1093 EP - 1101 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Neffe, Axel T. A1 - Löwenberg, Candy A1 - Lendlein, Andreas T1 - Hydrogel networks by aliphatic dithiol Michael addition to glycidylmethacrylated gelatin JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Functionalization of gelatin with glycidylmethacrylate (GMA-gelatin) enables network formation employing the double bond, so that the reaction is orthogonal to the inherent functional groups in the biomacromolecule. Here, network formation by crosslinking of GMA-gelatin with hexane 1,6-dithiol or nonane 1,9-dithiol to tailor properties and enable a shape-memory effect is shown by H-1 NMR and FT-IR spectroscopy. Hydrogel swelling (460-1900 vol%) and mechanical properties (Young's modulus E = 59-512 kPa, elongation at break epsilon(b) = 44-127%) depended on the molecular composition of the networks and temperature. Increased crosslinker length, thiol:methacrylate molar ratio, and precursor concentrations led to denser networks. Change of properties with temperature suggested adoption of triple helices by gelatin chains, forming physical netpoints at lower temperatures (< 20 degrees C). However, the limited freedom of the gelatin chains to move allowed only a minimal extent of triple helices formation, as it became apparent from the related signal in wide-angle X-ray scattering and the thermal transition associated to triple helices in some networks by DSC. The presented strategy is likely transferable to other biomacromolecules, and the results suggest that too short crosslinkers may result in a significant amount of grafting rather than network formation. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00136-8 SN - 2059-8521 VL - 6 IS - 33 SP - 796 EP - 800 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Lau, Skadi A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials JF - International journal of molecular sciences N2 - Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT. KW - cyclic olefin copolymer KW - poly(tetrafluoroethylene) KW - endothelial cells KW - platelets KW - in vitro thrombogenicity testing Y1 - 2021 U6 - https://doi.org/10.3390/ijms22137006 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 13 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Schönemann, Eric A1 - Koc, Julian A1 - Karthäuser, Jana A1 - Özcan, Onur A1 - Schanzenbach, Dirk A1 - Schardt, Lisa A1 - Rosenhahn, Axel A1 - Laschewsky, André T1 - Sulfobetaine methacrylate polymers of unconventional polyzwitterion architecture and their antifouling properties JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior. Y1 - 2021 U6 - https://doi.org/10.1021/acs.biomac.0c01705 SN - 1525-7797 SN - 1526-4602 VL - 22 IS - 4 SP - 1494 EP - 1508 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ihlenburg, Ramona A1 - Mai, Tobias A1 - Thünemann, Andreas F. A1 - Baerenwald, Ruth A1 - Saalwächter, Kay A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine hydrogels with a complex multilength-scale hierarchical structure JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Defects KW - Hydrogels KW - Nuclear magnetic resonance spectroscopy KW - Scattering KW - X-ray scattering Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lau, Skadi A1 - Gossen, Manfred A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Differential sensitivity of assays for determining vein endothelial cell senescence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - In vivo endothelialization of polymer-based cardiovascular implant materials is a promising strategy to reduce the risk of platelet adherence and the subsequent thrombus formation and implant failure. However, endothelial cells from elderly patients are likely to exhibit a senescent phenotype that may counteract endothelialization. The senescence status of cells should therefore be investigated prior to implantation of devices designed to be integrated in the blood vessel wall. Here, human umbilical vein endothelial cells (HUVEC) were cultivated up to passage (P) 4, 10 and 26/27 to determine the population doubling time and the senescence status by four different methods. Determination of the senescence-associated beta-galactosidase activity (SA-beta-Gal) was carried out by colorimetric staining and microscopy (i), as well as by photometric quantification (ii), and the expression of senescence-associated nuclear proteins p16 and p21 as well as the proliferation marker Ki67 was assessed by immunostaining (iii), and by flow cytometry (iv). The population doubling time of P27-cells was remarkably greater (103 +/- 65 h) compared to P4-cells (24 +/- 3 h) and P10-cell (37 +/- 15 h). Among the four different methods tested, the photometric SA-beta-Gal activity assay and the flow cytometric determination of p16 and Ki67 were most effective in discriminating P27-cells from P4- and P10-cells. These methods combined with functional endothelial cell analyses might aid predictions on the performance of implant endothelialization in vivo. KW - Ageing KW - population doubling time KW - senescence-associated KW - beta-galactosidase KW - cell cycle inhibitors KW - p16 KW - p21 KW - Ki67 Y1 - 2022 U6 - https://doi.org/10.3233/CH-211294 SN - 1386-0291 SN - 1875-8622 VL - 81 IS - 3 SP - 191 EP - 203 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Zhang, Pengfei A1 - Rešetič, Andraž A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Multifunctionality in polymer networks by dynamic of coordination bonds JF - Macromolecular chemistry and physics N2 - The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities. KW - assembly capabilities KW - fluorescence stimuli‐ responsivity KW - multiple functions KW - reshaping abilities KW - rhodium(I)– phosphine KW - coordination bonds KW - solvent resistance Y1 - 2021 U6 - https://doi.org/10.1002/macp.202000394 SN - 1521-3935 VL - 222 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Göttlich, Richard A1 - Graulich, Nicole A1 - Huwer, Johannes A1 - Banerji, Amitabh T1 - Analog und digital BT - Chemieunterricht mit Potenzial JF - Chemie konkret : CHEMKON ; Forum für Unterricht und Didaktik Y1 - 2022 U6 - https://doi.org/10.1002/ckon.202200046 SN - 0944-5846 SN - 1521-3730 VL - 29 SP - 182 EP - 182 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tartivel, Lucile A1 - Blocki, Anna M. A1 - Braune, Steffen A1 - Jung, Friedrich A1 - Behl, Marc A1 - Lendlein, Andreas T1 - An Inverse shape-memory hydrogel scaffold switching upon cooling in a tissue-tolerated temperature range JF - Advanced materials interfaces N2 - Tissue reconstruction has an unmet need for soft active scaffolds that enable gentle loading with regeneration-directing bioactive components by soaking up but also provide macroscopic dimensional stability. Here microporous hydrogels capable of an inverse shape-memory effect (iSME) are described, which in contrast to classical shape-memory polymers (SMPs) recover their permanent shape upon cooling. These hydrogels are designed as covalently photo cross-linked polymer networks with oligo(ethylene glycol)-oligo(propylene glycol)-oligo(ethylene glycol) (OEG-OPG-OEG) segments. When heated after deformation, the OEG-OPG-OEG segments form micelles fixing the temporary shape. Upon cooling, the micelles dissociate again, the deformation is reversed and the permanent shape is obtained. Applicability of this iSME is demonstrated by the gentle loading of platelet-rich plasma (PRP) without causing any platelet activation during this process. PRP is highly bioactive and is widely acknowledged for its regenerative effects. Hence, the microporous inverse shape-memory hydrogel (iSMH) with a cooling induced pore-size effect represents a promising candidate scaffold for tissue regeneration for potential usage in minimally invasive surgery applications. KW - active scaffold KW - critical micellation temperature KW - hydrogel KW - inverse KW - shape-memory effect KW - platelet-rich plasma Y1 - 2022 U6 - https://doi.org/10.1002/admi.202101588 SN - 2196-7350 VL - 9 IS - 6 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Hydrolytic stability of polyetherimide investigated in ultrathin films JF - Journal of materials research : JMR / Materials Research Society N2 - Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis. KW - 2D materials KW - Membrane KW - Polymer KW - Water KW - Nanostructure Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00267-6 SN - 0884-2914 SN - 2044-5326 VL - 36 IS - 14 SP - 2987 EP - 2994 PB - Springer CY - Berlin ER - TY - JOUR A1 - Tang, Jo Sing Julia A1 - Smaczniak, Aline Debrassi A1 - Tepper, Lucas A1 - Rosencrantz, Sophia A1 - Aleksanyan, Mina A1 - Dähne, Lars A1 - Rosencrantz, Ruben R. T1 - Glycopolymer based LbL multilayer thin films with embedded liposomes JF - Macromolecular bioscience N2 - Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes aredescribed. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. The adsorbed mass, pH stability, and integrity of glycopolymer coatings as well as the embedded liposomes are investigated via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring , which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes is presented. KW - glycopolymers KW - layer-by-layer self-assembly KW - liposomes KW - polyelectrolyte KW - multilayer film Y1 - 2022 U6 - https://doi.org/10.1002/mabi.202100461 SN - 1616-5187 SN - 1616-5195 VL - 22 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Breternitz, Joachim T1 - Structural systematic investigations of photovoltaic absorber materials N2 - The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided. N2 - Die direkte Umwandlung der Energie der Sonne bildet einen zentralen Baustein im Umbau unserer Gesellschaft von der Nutzung fossiler, nicht nachhaltiger Energieträger zum Erreichen einer nachhaltigen Wirtschaft. Neben den gesellschaftlichen Veränderungen ist es insbesondere das Verständnis der genutzten Festkörper, das den Motor dieser Entwicklung bildet. In dieser Arbeit werden Prinzipien der systematisch-kristallographischen Untersuchung und Kategorisierung von Festkörpern genutzt, um die Eigenschaften der Materialien gezielt steuern zu können. Dabei bildet das Verständnis des kristallinen Zustands und seine Untersuchung die Basis, auf der angewandtere Forschungsansätze aufbauen. In dieser Arbeit werden vor allem zwei Materialsysteme betrachtet, die als Absorbermaterialien in Solarzellen in Betracht gezogen werden: Halid-Perowskite und II-IV-N2-Nitrid Materialien. Die ersteren zeichnen sich insbesondere durch ihre erstaunlich hohen Effizienzen und rapide Entwicklung in den letzten Jahren aus, während das letztere System in besonderer Weise auf Nachhaltigkeit optimiert ist, und giftige oder seltene Elemente zu vermeiden sucht. KW - Materials Chemistry KW - Crystallography KW - Photovoltaics Y1 - 2023 ER - TY - THES A1 - Iqbal, Zafar T1 - Interface design and characterization for stable inorganic perovskite solar cells T1 - Grenzflächendesign und- charakterisierung für stabile anorganische Perowskit-Solarzellen BT - inorganic perovskite solar cells N2 - We live in an era driven by fossil fuels. The prevailing climate change suggests that we have to significantly reduce greenhouse gas emissions. The only way forward is to use renewable energy sources. Among those, solar energy is a clean, affordable, and sustainable source of energy. It has the potential to satisfy the world’s energy demand in the future. However, there is a need to develop new materials that can make solar energy usable. Photovoltaics (PV) are devices that convert photon energy into electrical energy. The most commonly used solar cells are based on crystalline silicon. However, the fabrication process for silicon solar cells is technologically difficult and costly. Solar cells based on lead halide perovskites (PSCs) have emerged as a new candidate for PV applications since 2009. To date, PSCs have achieved 26% power-conversion-efficiency (PCE) for its single junction, and 33.7% PCE for tandem junction devices. However, there is still room for improvement in overall performance. The main challenge for the commercialization of this technology is the stability of the solar cells under operational conditions. Inorganic perovskite CsPbI3 has attracted researchers’ interest due to its stability at elevated temperatures, however, inorganic perovskites also have associated challenges, e.g. phase stability, larger voltage loss compared to their organic-inorganic hybrid counterparts, and interface energy misalignment. The most efficient inorganic perovskite solar cell is stable for up to a few hundred hours while the most stable device in the field of inorganic PSCs reported so far is at 17% PCE. This suggests the need for improvement of the interfaces for enhanced open circuit voltage (VOC), and optimization of the energy alignment at the interfaces. This dissertation presents the study on interfaces between the perovskite layer and hole transport layer (HTL) for stable CsPbI3 solar cells. The first part of the thesis presents an investigation of the CsPbI3 film annealing environment and its subsequent effects on the perovskite/HTL interface dynamics. Thin films annealed in dry air were compared with thin films annealed in ambient air. Synchrotron-based hard X-ray spectroscopy (HAXPES) measurements reveal that annealing in ambient air does not have an adverse effect; instead, those samples undergo surface band bending. This surface band modification induces changes in interface charge dynamics and, consequently, an improvement in charge extraction at the interfaces. Further, transient surface photovoltage (tr-SPV) simulations show that air-annealed samples exhibit fewer trap states compared to samples annealed in dry air. Finally, by annealing the CsPbI3 films in ambient air, a PCE of 19.8% and Voc of 1.23 V were achieved for an n-i-p structured device. Interface engineering has emerged as a strategy to extract the charge and optimize the energy alignment in perovskite solar cells (PSCs). An interface with fewer trap states and energy band levels closer to the selective contact helps to attain improved efficiencies in PSCs. The second part of the thesis presents a design for the CsPbI3/HTM interface. In this work, an interface between CsPbI3 perovskite and its hole selective contact N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-tetramine(Spiro-OMeTAD), realized by trioctylphosphine oxide (TOPO), a dipole molecule is introduced. On top of a perovskite film well-passivated by n-octyl ammonium Iodide (OAI), it created an upward surface band-bending at the interface byTOPO that optimizes energy level alignment and enhances the extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. In addition, the work also sheds light on the interfacial charge-selectivity and the long-term stability of CsPbI3 perovskite solar cells. The third part of the thesis extends the previous studies to polymeric poly(3-hexylthiophene-2,5-diyl) (P3HT) as HTL. The CsPbI3/P3HT interface is critical due to high non-radiative recombination. This work presents a CsPbI3/P3HT interface modified with a long-chain alkyl halide molecule, n-hexyl trimethyl ammonium bromide (HTAB). This molecule largely passivates the CsPbI3 perovskite surface and improves the charge extraction across the interface. Consequently, a Voc of over 1.00 V and 14.2% PCE were achieved for CsPbI3 with P3HT as HTM. Overall the results presented in this dissertation introduce and discuss methods to design and study the interfaces in CsPbI3-based solar cells. This study can pave the way for novel interface designs between CsPbI3 and HTM for charge extraction, efficiency and stability. N2 - Wir leben in einem Zeitalter, das von fossilen Brennstoffen geprägt ist. Der fortschreitende Klimawandel erfordert eine merkliche Reduktion der Treibhausgasemissionen. Der einzige Weg hin zu einer nachhaltigen Energiewirtschaft ist die Implementierung erneuerbarer Energiequellen. Solarenergie hat das Potential, den Energiebedarf der Welt langfristig auf saubere und kostengünstige Weise zu decken. Es müssen jedoch neue Materialien zur Marktreife entwickelt werden, die die Solarenergie nutzbar machen können. In der Photovoltaik (PV) wird Lichtenergie in elektrische Energie umwandelt, wobei die gängisten Solarzellen aus kristallinem Silizium bestehen. Die Herstellung von Silizium-Solarzellen ist jedoch technisch aufwending und kostspielig. Deshalb haben sich Solarzellen auf Basis von Bleihalogenid-Perowskiten (engl. perovskite solar cells, PSCs) seit 2009 als mögliche Alternative zur Siliziumtechnologie entwickelt. Bisweilen konnten Wirkungsgrade (engl. power conversion efficiency, PCE) von 26% in einem einzelnen Halbleiterübergang und von 33.7% in einem Tandemübergang erzielt werden. Diese Werte sind jedoch steigerbar und werden regelmäßig übertroffen. Die größte Herausfoderung für die Entwicklung dieser Technologie ist die Stabilität der Solarzellen unter Betriebsbedingungen. Der anorganische Perowskit CsPbI3 ist aufgrund seiner Stabilität bei hohen Temperaturen deshalb besonders interessant für die Forschung, obwohl das Material seine eigenen Herausforderungen birgt, wie zum Beispiel seine Phaseninstabilität, größere Leerlaufspannungsverluste im Vergleich zu seinen organisch-anorganisch-hybriden Analoga und Fehlaurichtung der Energiebänder an der Grenzfläche. Die Stabilität der effizientesten Solarzelle auf CsPbI3-Basis liegt bei einigen hundert Stunden, während die stabilste Solarzelle einen Wirkungsgrad von nunmehr 17% erzielt. Dies deutet auf die Notwendigkeit hin, die Grenzflächen zu den angrenzenden ladungsselektiven Kontakten zu verbessern – mit dem Ziel, die Leerlaufspannung (engl. open-circuit voltage, VOC) zu erhöhen und die Ausrichtung der Energiebänder an den Grenzflächen zu optimieren. Diese Dissertation befasst sich mit der Untersuchung der Grenzflächen zwischen der Perowskitschicht und der Lochtransportschicht (engl. hole transport layer, HTL) für stabile CsPbI3-Solarzellen. Im ersten Teil der Arbeit werden die Temperbedingungen für CsPbI3-Dünnfilme und ihre Auswirkungen auf die Ladungsträgerdynamik an der Perowskit/HTL-Grenzfläche untersucht. Dünnfilme, die in trockener Atmosphäre getempert wurden, wurden mit Dünnfilmen verglichen, die in Standardatmosphäre getempert wurden. Synchrotrongestützte Messungen der Photoelektronenspektroskopie mit harter Röntgenstrahlung (engl. hard X-ray photoelectron spectrpscopy, HAXPES) zeigen, dass das Tempern in Umgebungsluft keine nachteiligen Auswirkungen hat; stattdessen erfahren jene Proben eine Verbiegung der Energiebänder an der Oberfläche. Diese Modifikation der Oberflächenbänder führt zu Veränderungen in der Grenzflächenladungsdynamik und in der Folge zu einer Verbesserung der Ladungsträgerextraktion über die Grenzfläche. Darüber hinaus zeigen Simulationen der transienten Oberflächenphotospannung (engl. transient surface photovoltage, trSPV), dass luftgetemperte Proben im Vergleich zu trockengetemperten Proben weniger Fallenzustände aufweisen. Letztlich wurde durch das Tempern der CsPbI3-Filme in Umgebungsluft eine PCE von 19,8% und ein VOC von 1,23 V für eine Solarzelle in n-i-p-Architektur erreicht. Die Manipulation der Grenzflächen ist eine Strategie, um die Extraktion von Ladungsträgern und die Ausrichtung der Energiebänder in PSCs zu kontrollieren. Eine Grenzfläche mit geringerer Dichte an Fallenzuständen sowie der Fähigkeit, das Energiebandniveau näher an das des selektiven Kontakts zu verschieben, trägt zur Verbesserung des Wirkungsgrads von PSCs bei. Im zweiten Teil der Arbeit wird ein Design für die CsPbI3/HTM-Grenzfläche vorgeschlagen. Dabei wird das Dipolmolekül Trioctylphosphinoxid (TOPO) an der Grenzfläche zwischen CsPbI3-Perowskit und dem lochselektiven Kontakt N2, N2, N2′, N2′, N7, N7, N7′, N7′-octakis(4-Methoxyphenyl) -9,9′-Spirobi[9H-Fluoren] -2,2′,7,7′-Tetramin (spiro-OMeTAD) eingeführt. Auf einem mit n-Octylammoniumiodid (OAI) passivierten Perowskitfilm erzeugt TOPO eine nach oben gerichtete Oberflächenbandverkrümmung, die die Ausrichtung der Energieniveaus optimiert und die Extraktion von Löchern aus CsPbI3 in den HTL verbessert. Infolgedessen wurden in den hergestellten Solarzellen ein VOC von 1,2 V und eine PCE von über 19% erzielt. Darüber hinaus nimmt die Arbeit auch die Ladungsträgerselektivität an der Grenzfläche und die Langzeitstabilität von CsPbI3-Perowskit-Solarzellen in den Fokus. Der dritte Teil der Arbeit erweitert die bisherigen Untersuchungen auf das Polymer Poly-(3-hexylthiophen-2,5-diyl) (P3HT) als HTL. Die CsPbI3/P3HT-Grenzfläche ist aufgrund der hohen nicht-radiativen Rekombination kritisch. In dieser Arbeit wird eine CsPbI3/P3HT-Grenzfläche vorgestellt, die mit einem langkettigen Alkylhalogenidmolekül, n-Hexyltrimethylammoniumbromid (HTAB), modifiziert wurde. Dieses Molekül passiviert die CsPbI3-Perowskit-Oberfläche weitgehend und verbessert die Ladungsträgerextraktion an der Grenzfläche. Für CsPbI3 mit P3HT als HTM konnte ein VOC von über 1,00 V und 14,2% PCE erreicht werden. Insgesamt werden in dieser Dissertation Methoden zur Entwicklung und Untersuchung von Grenzflächen für Solarzellen auf CsPbI3-Basis vorgestellt und diskutiert. Diese Studie kann Wege für neuartiges Grenzflächendesign zwischen CsPbI3 und HTM im Hinblick auf Ladungsträgerextraktion, Effizienz und Stabilität eröffnen. KW - CsPbI3 KW - interfaces KW - perovskite solar cells KW - CsPbI3 KW - Grenzflächen KW - Perowskit-Solarzellen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-618315 ER - TY - JOUR A1 - Abdou, Nicole A1 - Alonso, Bruno A1 - Brun, Nicolas A1 - Landois, Perine A1 - Taubert, Andreas A1 - Hesemann, Peter A1 - Mehdi, Ahmad T1 - Ionic guest in ionic host BT - ionosilica ionogel composites via ionic liquid confinement in ionosilica supports JF - Materials chemistry frontiers N2 - Ionosilica ionogels, i.e. composites consisting of an ionic liquid (IL) guest confined in an ionosilica host matrix, were synthesized via a non-hydrolytic sol-gel procedure from a tris-trialcoxysilylated amine precursor using the IL [BMIM]NTf2 as solvent. Various ionosilica ionogels were prepared starting from variable volumes of IL in the presence of formic acid. The resulting brittle and nearly colourless monoliths are composed of different amounts of IL guests confined in an ionosilica host as evidenced via thermogravimetric analysis, FT-IR, and C-13 CP-MAS solid-state NMR spectroscopy. In the following, we focused on confinement effects between the ionic host and guest. Special host-guest interactions between the IL guest and the ionosilica host were evidenced by H-1 solid-state NMR, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) measurements. The three techniques indicate a strongly reduced ion mobility in the ionosilica ionogel composites containing small volume fractions of confined IL, compared to conventional silica-based ionogels. We conclude that the ionic ionosilica host stabilizes an IL layer on the host surface; this then results in a strongly reduced ion mobility compared to conventional silica hosts. The ion mobility progressively increases for systems containing higher volume fractions of IL and finally reaches the values observed in conventional silica based ionogels. These results therefore point towards strong interactions and confinement effects between the ionic host and the ionic guest on the ionosilica surface. Furthermore, this approach allows confining high volume fractions of IL into self-standing monoliths while preserving high ionic conductivity. These effects may be of interest in domains where IL phases must be anchored on solid supports to avoid leaching or IL spilling, e.g., in catalysis, in gas separation/sequestration devices or for the elaboration of solid electrolytes for (lithium-ion) batteries and supercapacitors. Y1 - 2022 U6 - https://doi.org/10.1039/d2qm00021k SN - 2052-1537 VL - 6 IS - 7 SP - 939 EP - 947 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kim, Jiyong A1 - Kim, Yohan A1 - Park, Kyoungwon A1 - Boeffel, Christine A1 - Choi, Hyung-Seok A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis JF - Small : nano micro N2 - The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs. KW - colloidal quantum dots KW - incomplete surface passivation KW - indium KW - phosphide KW - surface chemistry KW - thiol passivation Y1 - 2022 U6 - https://doi.org/10.1002/smll.202203093 SN - 1613-6810 SN - 1613-6829 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Eren, Enis Oğuzhan T1 - Covalent anode materials for high-energy sodium-ion batteries T1 - Kovalente Anodenmaterialien für hoch-energetische Natrium-Ionen-Batterien N2 - The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials’ nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material’s stability and potential applications in sodium-ion batteries. N2 - Die Abhängigkeit von fossilen Brennstoffen hat zu einem abnormalen Anstieg von Treibhausgasen in der Atmosphäre geführt, was zur globalen Klimakrise beiträgt. Als Reaktion darauf hat eine rasche Umstellung auf erneuerbare Energiequellen begonnen, insbesondere Lithium-Ionen-Batterien, die eine entscheidende Rolle in der grünen Energiewende spielen. Bedenken hinsichtlich der Verfügbarkeit und geopolitischen Implikationen von Lithium haben jedoch die Erforschung alternativer wiederaufladbarer Batteriesysteme wie Natrium-Ionen-Batterien angeregt. Natrium ist in der Erdkruste und im Meerwasser deutlich häufiger und gleichmäßiger verteilt, was seine Extraktion im Vergleich zu Lithium einfacher und kostengünstiger macht. Aufgrund der geheimnisvollen Natur ihrer Komponenten sind Natrium-Ionen-Batterien derzeit noch nicht ausreichend fortgeschritten, um Lithium-Ionen-Batterien zu ersetzen. Insbesondere weist Natrium einen stärker metallischen Charakter und einen größeren Ionenradius auf, was zu einem anderen Ionen-Speichermechanismus führt, der in Lithium-Ionen-Batterien verwendet wird. Innovationen in synthetischen, post-synthetischen Methoden und Schnittstellentechnik zeigen deutlich die Bedeutung der Entwicklung hochleistungsfähiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien auf. Das Ziel dieser Dissertation ist es, einen systematischen Ansatz zur Herstellung effizienter, leistungsstarker und nachhaltiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien zu untersuchen. Diese Dissertation konzentriert sich auf drei Hauptziele. Erstens untersucht sie die Bedeutung von post-synthetischen Methoden bei der Gestaltung von Schnittstellen. Eine konforme Kohlenstoffnitrid-Beschichtung wird durch chemische Gasphasenabscheidung auf einer Kohlenstoffelektrode als künstliche Festelektrolytschnittstelle abgeschieden, was zu einer verbesserten elektrochemischen Leistung führt. Die Wechselwirkung zwischen der künstlichen Kohlenstoffnitrid-Schnittstelle und der Kohlenstoffelektrode trägt zu einer verbesserten anfänglichen kolumbischen Effizienz, Leistung bei hohen Raten und Gesamtkapazität bei. Zweitens wird ein neuartiger Prozess zur Herstellung von schwefelreichem Kohlenstoff als hochleistungsfähiges Anodenmaterial für Natrium-Ionen-Batterien vorgestellt. Die Methode verwendet einen Oligo-3,4-ethylendioxythiophen-Vorläufer für eine harte Kohlenstoffanode mit hohem Schwefelgehalt, um den Effekt des Schwefelheteroatoms auf den elektrochemischen Natriumspeichermechanismus zu untersuchen. Durch Optimierung der Kondensationstemperatur wird eine bedeutende Transformation in der Nanostruktur des Materials erreicht, was zu einer verbesserten elektrochemischen Leistung führt. Der Einsatz von in-operando-Röntgenkleinwinkelstreuung liefert wertvolle Erkenntnisse über die Wechselwirkung zwischen Mikroporen und Natriumionen während der elektrochemischen Prozesse. Letzendlich wird die Entwicklung einer hochkapazitiven harten Kohlenstoffanode, die aus 5-Hydroxymethylfurfural gewonnen wird, untersucht. Dieses Kohlenstoffmaterial zeigt eine außergewöhnliche Leistung sowohl bei niedrigen als auch bei hohen Stromdichten. KW - sodium-ion battery KW - sulfur KW - carbon KW - CN KW - anode KW - in-operando SAXS KW - Kohlenstoffnitrid (CN) KW - Anode KW - Kohlenstoff KW - in-operando SAXS KW - Natrium-Ionen-Batterie KW - Schwefel Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622585 ER - TY - JOUR A1 - Hartlieb, Matthias A1 - Mansfield, Edward D. H. A1 - Perrier, Sebastien T1 - A guide to supramolecular polymerizations JF - Polymer Chemistry N2 - Supramolecular polymers or fibers are non-covalent assemblies of unimeric building blocks connected by secondary interactions such as hydrogen bonds or pi-pi interactions. Such structures hold enormous potential in the development of future materials, as their non-covalent nature makes them highly modular and adaptive. Within this review we aim to provide a broad overview over the area of linear supramolecular polymers including the different mechanisms of their polymerization as well as methods essential for their characterization. The different non-covalent interactions able to form supramolecular polymers are discussed, and key examples for each species are shown. Particular emphasis is laid on the development of living supramolecular polymerization able to produce fibers with a controlled length and low length dispersity, and even enable the production of supramolecular block copolymers. Another important and very recent field is the development of out-of-equilibrium supramolecular polymers, where the polymerization process can be temporally controlled enabling access to highly adaptive materials. Y1 - 2020 U6 - https://doi.org/10.1039/c9py01342c SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 6 SP - 1083 EP - 1110 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Doering, Ulrike A1 - Grigoriev, Dmitry A1 - Tapio, Kosti A1 - Bald, Ilko A1 - Böker, Alexander T1 - Synthesis of nanostructured protein-mineral-microcapsules by sonication JF - Soft matter N2 - We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy. Cryo-SEM and EDX mapping visualizations show the homogeneous distribution of the densely packed nanoparticles in the capsule shell. In contrast to the results reported in our previous paper,(1) the shell of those nanostructured composite microcapsules is not cross-linked by the intermolecular disulfide bonds between BSA molecules. Instead, a Pickering-Emulsion formation takes place because of the amphiphilicity-driven spontaneous attachment of the BSA-modified nanoparticles at the oil/water interface. Using colloidal particles for the formation of the shell of the microcapsules, in our case silica, hydroxyapatite and calcium carbonate nanoparticles, is promising for the creation of new functional materials. The nanoparticulate building blocks of the composite shell with different chemical, physical or morphological properties can contribute to additional, sometimes even multiple, features of the resulting capsules. Microcapsules with shells of densely packed nanoparticles could find interesting applications in pharmaceutical science, cosmetics or in food technology. Y1 - 2022 U6 - https://doi.org/10.1039/d1sm01638e SN - 1744-6848 VL - 18 IS - 13 SP - 2558 EP - 2568 PB - Royal Society of Chemistry CY - London ER -