TY - JOUR A1 - Navarro, Salvador A1 - Shkilnyy, Andriy A1 - Tiersch, Brigitte A1 - Taubert, Andreas A1 - Menzel, Henning T1 - Preparation, characterization, and thermal gelation of amphiphilic alkyl-poly(ethyleneimine) N2 - Amphiphilic alkyl-poly(ethyleneimine)s (alkyl-PEI) with different degrees of polymerization have been produced by alkaline hydrolysis of alkyl-poly(2-methyl-2-oxazoline). Potentiometric titration of the alkyl-PEI shows the influence of the alkyl chain and the degree of polymerization on the titration curves and hence on the polymer conformation. Karl Fischer titration has been used to determine the water content in the polymers. Subsequent X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) measurements prove the existence of different hydration states of the PEI even under dry storage conditions. Upon cooling from hot aqueous Solutions, hydrogels form. The gelation concentration decreases with increasing degree of polymerization of the PEI segment. Scanning electron microscopy (SEM and cryo-SEM) of the hydrogels reveal an alkyl-PEI fibrous network composed of fan-like units. DSC shows that the percentages of bound and free water in the hydrogels depend on the concentration of polar amino groups. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La9013569 SN - 0743-7463 ER - TY - JOUR A1 - Gharagozloo-Hubmann, Kati A1 - Kulikovska, Olga A1 - Boerger, Volker A1 - Menzel, Henning A1 - Stumpe, Joachim T1 - Surface relief gratings in azobenzene-containing polymers with linear and star-branched architectures : a comparison N2 - The influence of molecular architecture on light-induced SRG formation was investigated. Polymers with different degree of branching were synthesized by ATRP and functionalized with azobenzene chromophores. The polymers differ only in their architecture - linear, 4-, 6-, or 12-arms stars. The photo-induced dichroism as well as the efficiency of SRG formation was similar for all polymers of this series. New consideration for the origin of the driving force was used to explain this behavior. The comparable SRG inscription rate in differently branched polymers can be rationalized by assuming that azobenzene acts as an internal molecular motor and can cause a non-turbulent motion on a scale smaller than that on which normal entanglement restriction forces act. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/10003495/home U6 - https://doi.org/10.1002/macp.200900218 SN - 1022-1352 ER -