TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tokmoldin, Nurlan A1 - Vollbrecht, Joachim A1 - Hosseini, Seyed Mehrdad A1 - Sun, Bowen A1 - Perdigón-Toro, Lorena A1 - Woo, Han Young A1 - Zou, Yingping A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths JF - Advanced energy materials N2 - Organic solar cells (OSC) nowadays match their inorganic competitors in terms of current production but lag behind with regards to their open-circuit voltage loss and fill-factor, with state-of-the-art OSCs rarely displaying fill-factor of 80% and above. The fill-factor of transport-limited solar cells, including organic photovoltaic devices, is affected by material and device-specific parameters, whose combination is represented in terms of the established figures of merit, such as theta and alpha. Herein, it is demonstrated that these figures of merit are closely related to the long-range carrier drift and diffusion lengths. Further, a simple approach is presented to devise these characteristic lengths using steady-state photoconductance measurements. This yields a straightforward way of determining theta and alpha in complete cells and under operating conditions. This approach is applied to a variety of photovoltaic devices-including the high efficiency nonfullerene acceptor blends-and show that the diffusion length of the free carriers provides a good correlation with the fill-factor. It is, finally, concluded that most state-of-the-art organic solar cells exhibit a sufficiently large drift length to guarantee efficient charge extraction at short circuit, but that they still suffer from too small diffusion lengths of photogenerated carriers limiting their fill factor. KW - diffusion length KW - drift length KW - figure of merit KW - lifetime‐ mobility product KW - steady‐ state photoconductance Y1 - 2021 U6 - https://doi.org/10.1002/aenm.202100804 SN - 1614-6840 VL - 11 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tokmoldin, Nurlan A1 - Hosseini, Seyed Mehrdad A1 - Raoufi, Meysam A1 - Phuong, Le Quang A1 - Sandberg, Oskar J. A1 - Guan, Huilan A1 - Zou, Yingping A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Extraordinarily long diffusion length in PM6:Y6 organic solar cells JF - Journal of materials chemistry : A, materials for energy and sustainability N2 - The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (J(SC)) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott-Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length - which is an order of magnitude larger than typical values for organics - dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells. Y1 - 2020 U6 - https://doi.org/10.1039/d0ta03016c SN - 2050-7488 SN - 2050-7496 VL - 8 IS - 16 SP - 7854 EP - 7860 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Shoaee, Safa A1 - Armin, Ardalan A1 - Stolterfoht, Martin A1 - Hosseini, Seyed Mehrdad A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Decoding Charge Recombination through Charge Generation in Organic Solar Cells JF - Solar RRL N2 - The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states-being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor. KW - charge generation KW - charge transfers KW - non-Langevin recombination KW - spin-related factors Y1 - 2019 U6 - https://doi.org/10.1002/solr.201900184 SN - 2367-198X VL - 3 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Shoaee, Safa A1 - Armin, Ardalan A1 - Stolterfoht, Martin A1 - Hosseini, Seyed Mehrdad A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Decoding charge recombination through charge generation in organic solar cells T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The in‐depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter‐related via the kinetics of charge transfer states—being singlet or triplet states. Although high‐charge‐photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low‐mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta‐analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field‐dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a “spin‐related factor” that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge‐generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin‐related factor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 773 KW - charge generation KW - charge transfers KW - non-Langevin recombination KW - spin-related factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437512 SN - 1866-8372 IS - 773 ER - TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1384 KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570018 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Perdigon-Toro, Lorena A1 - Zhang, Huotian A1 - Markina, Anastaa si A1 - Yuan, Jun A1 - Hosseini, Seyed Mehrdad A1 - Wolff, Christian Michael A1 - Zuo, Guangzheng A1 - Stolterfoht, Martin A1 - Zou, Yingping A1 - Gao, Feng A1 - Andrienko, Denis A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell JF - Advanced materials N2 - Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier. KW - driving force KW - non-fullerene acceptors KW - organic solar cells KW - photocurrent generation Y1 - 2020 U6 - https://doi.org/10.1002/adma.201906763 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Le Quang Phuong, A1 - Hosseini, Seyed Mehrdad A1 - Koh, Chang Woo A1 - Woo, Han Young A1 - Shoaee, Safa T1 - Measuring Competing Recombination Losses in a Significantly Reduced Langevin System by Steady-State Photoinduced Absorption and Photocurrent Spectroscopy JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Understanding and disentangling photophysical properties of long-lived photoexcitations in bulk heterojunction (BHJ) solar cells, which contribute mostly to photocurrent, provide essential guidelines to their improvement. However, to construct improved physical models, their rational design relies on reliable measurement techniques for charge recombination. Here, we combine photocurrent and photoinduced absorption spectroscopy (PCPIA) to directly probe the free carrier concentration and investigate loss mechanisms of long-lived excitations in nearly 10% efficient PPDT2FBT/PC70BM BHJ solar cells under steady-state operational conditions. From the PCPIA data obtained under open- circuit and short-circuit conditions, the absorption cross section and the concentration of photoexcitations are obtained. This material system exhibits an exceptionally low bimolecular recombination rate, about 300 times smaller than the diffusion-controlled electron and hole encounter rate. Furthermore, we observe that the fill factor is limited by losses originating from long-lived photoexcitations undergoing dispersive bimolecular recombination. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b08901 SN - 1932-7447 SN - 1932-7455 VL - 123 IS - 45 SP - 27417 EP - 27422 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hosseini, Seyed Mehrdad A1 - Tokmoldin, Nurlan A1 - Lee, Young Woong A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Putting order into PM6:Y6 solar cells to reduce the langevin recombination in 400 nm thick junction JF - Solar RRL N2 - Increasing the active layer thickness without sacrificing the power conversion efficiency (PCE) is one of the great challenges faced by organic solar cells (OSCs) for commercialization. Recently, PM6:Y6 as an OSC based on a non-fullerene acceptor (NFA) has excited the community because of its PCE reaching as high as 15.9%; however, by increasing the thickness, the PCE drops due to the reduction of the fill factor (FF). This drop is attributed to change in mobility ratio with increasing thickness. Furthermore, this work demonstrates that by regulating the packing and the crystallinity of the donor and the acceptor, through volumetric content of chloronaphthalene (CN) as a solvent additive, one can improve the FF of a thick PM6:Y6 device (approximate to 400 nm) from 58% to 68% (PCE enhances from 12.2% to 14.4%). The data indicate that the origin of this enhancement is the reduction of the structural and energetic disorders in the thick device with 1.5% CN compared with 0.5% CN. This correlates with improved electron and hole mobilities and a 50% suppressed bimolecular recombination, such that the non-Langevin reduction factor is 180 times. This work reveals the role of disorder on the charge extraction and bimolecular recombination of NFA-based OSCs. KW - charge carrier extraction KW - energetic disorders KW - non-fullerene acceptors KW - non-Langevin reduction factors KW - thick junctions Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000498 SN - 2367-198X VL - 4 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hosseini, Seyed Mehrdad A1 - Roland, Steffen A1 - Kurpiers, Jona A1 - Chen, Zhiming A1 - Zhang, Kai A1 - Huang, Fei A1 - Armin, Ardalan A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Impact of Bimolecular Recombination on the Fill Factor of Fullerene and Nonfullerene-Based Solar Cells BT - A Comparative Study of Charge Generation and Extraction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Power conversion efficiencies of donor/acceptor organic solar cells utilizing nonfullerene acceptors have now increased beyond the record of their fullerene-based counterparts. There remain many fundamental questions regarding nanomorphology, interfacial states, charge generation and extraction, and losses in these systems. Herein, we present a comparative study of bulk heterojunction solar cells composed of a recently introduced naphthothiadiazole-based polymer (NT812) as the electron donor and two different acceptor molecules, namely, [6,6]-phenyl-C71-butyric acid methyl ester (PCBM)[70] and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). A comparison between the photovoltaic performance of these two types of solar cells reveals that the open-circuit voltage (Voc) of the NT812:ITIC-based solar cell is larger, but the fill factor (FF) is lower than that of the NT812:PCBM[70] device. We find the key reason behind this reduced FF in the ITIC-based device to be faster nongeminate recombination relative to the NT812:PCBM[70] system. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b11669 SN - 1932-7447 VL - 123 IS - 11 SP - 6823 EP - 6830 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Hosseini, Seyed Mehrdad T1 - Non-Langevin Recombination in Fullerene and Non-Fullerene Acceptor Solar Cells T1 - Nicht-Langevin-Rekombination in Fulleren- und Nicht-Fulleren-Akzeptor-Solarzellen N2 - Organic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is faster non-geminate recombination relative to the fullerene (PCBM[70]-based) devices. This is then followed by a consideration of a newly synthesized NFA Y-series derivative which exhibits the highest power conversion efficiency for OSC at the time. Such that in the second study, we illustrated the role of disorder on the non-geminate recombination and charge extraction of thick NFA (Y6-based) devices. As a result, we enhanced the FF of thick PM6:Y6 by reducing the disorder which leads to suppressing the non-geminate recombination toward non-Langevin system. In the third work, we revealed the reason behind thickness independence of the short circuit current of PM6:Y6 devices, caused by the extraordinarily long diffusion length of Y6. The fourth study entails a broad comparison of a selection of fullerene and non-fullerene blends with respect to charge generation efficiency and recombination to unveil the importance of efficient charge generation for achieving reduced recombination. I employed transient measurements such as Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV), and steady-state techniques such as Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV), and Photo-Induce Absorption (PIA), to analyze the OSCs. The outcomes in this thesis together draw a complex picture of multiple factors that affect reduced-Langevin recombination and thereby the FF and overall performance. This provides a suitable platform for identifying important parameters when designing new blend systems. As a result, we succeeded to improve the overall performance through enhancing the FF of thick NFA device by adjustment of the amount of the solvent additive in the active blend solution. It also highlights potentially critical gaps in the current experimental understanding of fundamental charge interaction and recombination dynamics. N2 - Organische Solarzellen (OSZ) haben in den letzten Jahren durch die Entwicklung neuartiger Nicht-Fulleren-Akzeptoren (NFA) hohe Wirkungsgrade erzielt. Fulleren-Derivate waren das Herzstück der Akzeptor-Materialien, die in der Forschung zur organischen Photovoltaik (OPV) verwendet wurden. Doch seit 2015 haben neuartige NFAs den Fullerenen den Rang abgelaufen. Allerdings ist das derzeitige Verständnis der Eigenschaften von NFA für OPV noch relativ begrenzt und kritische Mechanismen, die die Leistung von OPV bestimmen, sind immer noch Gegenstand von Diskussionen. In dieser Arbeit geht es um das Verständnis der Reduced-Langevin-Rekombination in Hinblick auf die bauteilphysikalischen Eigenschaften von Fulleren- und Nicht-Fulleren-Systemen. Die Arbeit besteht aus vier eng miteinander verbundenen Studien. Die erste ist eine detaillierte Untersuchung des Füllfaktors (FF), ausgedrückt als Transport- und Rekombinationseigenschaften in einem Vergleich von Fulleren und Nicht-Fulleren-Akzeptoren. Wir untersuchten den Hauptgrund für die geringere FF im NFA-Bauelement (auf ITIC-Basis), nämlich die schnellere nicht-geminate Rekombination im Vergleich zum Fulleren-Bauelement (auf PCBM[70]-Basis). Anschließend wird ein neu synthetisiertes NFA-Derivat der Y-Serie betrachtet, das derzeit die höchste Leistungsumwandlungseffizienz für OSZ aufweist. In der zweiten Studie veranschaulichten wir die Rolle der Unordnung bei der nicht-geminaten Rekombination und der Ladungsextraktion von dicken NFA-Bauelementen (auf Y6-Basis). Infolgedessen haben wir die FF von dickem PM6:Y6 verbessert, indem wir die Unordnung reduziert haben, was zur Unterdrückung der nicht-geminaten Rekombination in Richtung Nicht-Langevin-System führt. In der dritten Arbeit haben wir den Grund für die Dickenunabhängigkeit des Kurzschlussstroms von NFA-Bauelementen aufgedeckt, die durch die außerordentlich lange Diffusionslänge von Y6 verursacht wird. Die vierte Studie umfasst einen umfassenden Vergleich einer Auswahl von Fulleren- und Nicht-Fulleren-Mischungen in Hinblick auf die Effizienz der Ladungserzeugung und Rekombination, um die Bedeutung einer effizienten Ladungserzeugung zum Erzielen einer geringeren Rekombination aufzuzeigen. Zur Analyse der OSCs habe ich transiente Messungen wie das Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV) sowie stationäre Techniken wie die Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV) und Photo-Induce Absorption (PIA) eingesetzt. Die Ergebnisse dieser Arbeit zeichnen ein komplexes Bild zahlreicher Faktoren, die die Rekombination nach dem Prinzip des reduzierten Langèvins und damit die FF und die Gesamtleistung beeinflussen. Dies bietet eine geeignete Plattform zum Identifizieren wichtiger Parameter bei der Entwicklung neuer Mischsysteme. So ist es uns gelungen, die Gesamtleistung zu verbessern, indem wir die FF der dicken NFA-Vorrichtung durch Anpassung der Menge des Lösungsmittelzusatzes in der aktiven Mischungslösung erhöht haben. Außerdem werden potenziell kritische Lücken im derzeitigen experimentellen Verständnis der grundlegenden Ladungswechselwirkung und Rekombinationsdynamik aufgezeigt. KW - Organic solar cells KW - Non-fullerene acceptors KW - Charge recombination KW - Non-Langevin systems KW - Structural and energetic disorder KW - Ladungsrekombination KW - Nicht-Langevin-Systeme KW - Nicht-Fulleren-Akzeptoren KW - Organische Solarzellen KW - Strukturelle und energetische Unordnung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-547831 ER - TY - JOUR A1 - Fathizadeh, O. A1 - Hosseini, Seyed Mehrdad A1 - Zimmermann, Alexander A1 - Keim, R. F. A1 - Boloorani, A. Darvishi T1 - Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - An understanding of the relationship between canopy structure and the water balance is needed for predicting how forest structure changes affect rainfall partitioning and, consequently, water resources. The objective of this study was to predict rainfall interception (I) and canopy storage capacity (S) using canopy structure variables and to investigate how seasonal changes influence their relationship. The study was conducted in twelve 50 m x 50 m plots in the Zagros forest in the western Iranian state of Ilam, protected forests of Dalab region. Average cumulative I was 84.2mm, accounting for 10.2% of cumulative gross precipitation (GP) over a 1-year period. Using a regression based method, S averaged similar to 1 mm and 0.1 mm in the leafed and leafless periods, respectively. There were no relationships between tree density and I: GP or S, but I: GP and S increased with leaf area index, canopy cover fraction, basal area, tree height, and diameter at breast height in the leafed period. In addition, wood area index and canopy cover fraction were related to I: GP or S in the leafless period. (C) 2017 Elsevier B.V. All rights reserved. KW - Canopy storage capacity KW - Canopy structure KW - Rainfall interception KW - Quercus brantii KW - Zagros forests Y1 - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2017.05.233 SN - 0048-9697 SN - 1879-1026 VL - 601 SP - 1824 EP - 1837 PB - Elsevier CY - Amsterdam ER -