TY - JOUR A1 - Carrapa, Barbara A1 - Reyes-Bywater, Sharon A1 - Safipour, Roxana A1 - Sobel, Edward A1 - Schoenbohm, Lindsay M. A1 - DeCelles, Peter G. A1 - Reiners, Peter W. A1 - Stockli, Daniel T1 - The effect of inherited paleotopography on exhumation of the Central Andes of NW Argentina JF - Geological Society of America bulletin N2 - Differential exhumation in the Puna Plateau and Eastern Cordillera of NW Argentina is controlled by inherited paleostructures and resulting paleotopography related to the Cretaceous Salta Rift paleomargins. The Ceno zoic deformation front related to the development of the Andean retro-arc orogenic system is generally associated with >4 km of exhumation, which is recorded by Cenozoic apatite fi ssion-track (AFT) and (U-Th-[Sm])/He ages (He ages) in the Eastern Cordillera of NW Argentina. New AFT ages from the top of the Nevado de Cachi document Oligocene (ca. 28 Ma) cooling, which, combined with existing data, indicates exhumation of this range between ca. 28 Ma and ca. 14 Ma. However, some of the highest ranges in the Eastern Cordillera preserve Cretaceous ages indicative of limited Cenozoic exhumation. Samples collected from an similar to 3-km-elevation transect along the northern part of the Sierra de Quilmes paleorift fl ank (Laguna Brava) show AFT ages between ca. 80 and ca. 50 Ma and He ages between ca. 45 and ca. 10 Ma. Another set of samples from an similar to 1-km-elevation transect farther to the southwest (La Quebrada) shows Cretaceous AFT ages between ca. 116 Ma and ca. 76 Ma, and mainly Cretaceous He ages, in agreement with AFT data. Analysis of existing AFT and He ages from the area once occupied by the Salta Rift reveals a pattern characterized by Cretaceous ages along paleorift highs and Cenozoic ages within paleorift hanging-wall basins and later foreland basin depocenters. This pattern is interrupted by the Sierras Pampeanas at similar to 28 degrees S, which record mid-Cenozoic ages. Our data are consistent with a complex inherited pattern of pre-Andean paleostructures, likely associated with paleotopography, which was beveled by the Cenozoic regional foreland basin and reactivated during the late Neogene (ca. <10 Ma), strongly controlling the magnitude of Cenozoic uplift and exhumation and thus cooling age distribution. This, combined with variable lithologic erodibility, resulted in an irregular distribution of themochronological ages. Y1 - 2014 U6 - https://doi.org/10.1130/B30844.1 SN - 0016-7606 SN - 1943-2674 VL - 126 IS - 1-2 SP - 66 EP - 77 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Carrapa, Barbara A1 - Mustapha, Fariq Shazanee A1 - Cosca, Michael A1 - Gehrels, George A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward A1 - DeCelles, Peter G. A1 - Russell, Joellen A1 - Goodman, Paul T1 - Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir JF - Lithosphere N2 - The Pamir is the western continuation of Tibet and the site of some of the highest mountains on Earth, yet comparatively little is known about its crustal and tectonic evolution and erosional history. Both Tibet and the Pamir are characterized by similar terranes and sutures that can be correlated along strike, although the details of such correlations remain controversial. The erosional history of the Pamir with respect to Tibet is significantly different as well: Most of Tibet has been characterized by internal drainage and low erosion rates since the early Cenozoic; in contrast, the Pamir is externally drained and topographically more rugged, and it has a strongly asymmetric drainage pattern. Here, we report 700 new U-Pb and Lu-Hf isotope determinations and >300 Ar-40/Ar-39 ages from detrital minerals derived from rivers in China draining the northeastern Pamir and >1000 apatite fission-track (AFT) ages from 12 rivers in Tajikistan and China draining the northeastern, central, and southern Pamir. U-Pb ages from rivers draining the northeastern Pamir are Mesozoic to Proterozoic and show affinity with the Songpan-Ganzi terrane of northern Tibet, whereas rivers draining the central and southern Pamir are mainly Mesozoic and show some affinity with the Qiangtang terrane of central Tibet. The epsilon(Hf) values are juvenile, between 15 and -5, for the northeastern Pamir and juvenile to moderately evolved, between 10 and -40, for the central and southern Pamir. Detrital mica Ar-40/Ar-39 ages for the northeastern Pamir (eastern drainages) are generally older than ages from the central and southern Pamir (western drainages), indicating younger or lower-magnitude exhumation of the northeastern Pamir compared to the central and southern Pamir. AFT data show strong Miocene-Pliocene signals at the orogen scale, indicating rapid erosion at the regional scale. Despite localized exhumation of the Mustagh-Ata and Kongur-Shan domes, average erosion rates for the northeastern Pamir are up to one order of magnitude lower than erosion rates recorded by the central and southern Pamir. Deeper exhumation of the central and southern Pamir is associated with tectonic exhumation of central Pamir domes. Deeper exhumation coincides with western and asymmetric drainages and with higher precipitation today, suggesting an orographic effect on exhumation. A younging-southward trend of cooling ages may reflect tectonic processes. Overall, cooling ages derived from the Pamir are younger than ages recorded in Tibet, indicating younger and higher magnitudes of erosion in the Pamir. Y1 - 2014 U6 - https://doi.org/10.1130/L360.1 SN - 1941-8264 SN - 1947-4253 VL - 6 IS - 6 SP - 443 EP - 455 PB - Geological Society of America CY - Boulder ER - TY - JOUR A1 - Carrapa, Barbara A1 - DeCelles, Peter G. A1 - Reiners, Peter W. A1 - Gehrels, George E. A1 - Sudo, Masafumi T1 - Apatite triple dating and white mica Ar-40/Ar-39 thermochronology of syntectonic detritus in the Central Andes : a multiphase tectonothermal history N2 - We applied apatite U-Pb, fission track, and (U-Th)/He triple dating and white mica Ar-40/Ar-39 thermochronology to syntectonic sedimentary rocks from the central Andean Puna plateau in order to determine the source-area geochronology and source sedimentary basin thermal histories, and ultimately the timing of multiple tectonothermal events in the Central Andes. Apatite triple dating of samples from the Eocene Geste Formation in the Salar de Pastos Grandes basin shows late Precambrian-Devonian apatite U-Pb crystallization ages, Eocene apatite fission track (AFT), and Eocene-Miocene (U-Th)/He (ca. 8-47 Ma) cooling ages. Double dating of cobbles from equivalent strata in the Arizaro basin documents early Eocene (46.2 +/- 3.9 Ma) and Cretaceous (107.6 +/- 7.6, 109.5 +/- 7.7 Ma) AFT and Eocene-Oligocene (ca. 55-30 Ma) (U-Th)/He ages. Thermal modeling suggests relatively rapid cooling between ca. 80 and 50 Ma and reheating and subsequent diachronous basin exhumation between ca. 30 Ma and 5 Ma. The Ar-40/Ar-39 white mica ages from the same samples in the Salar de Pastos Grandes area are mainly 400-350 Ma, younger than apatite U-Pb ages, suggesting source- terrane cooling and exhumation during the Devonian-early Carboniferous. Together these data reveal multiple phases of mountain building in the Paleozoic and Cenozoic. Basin burial temperatures within the plateau were limited to <80 degrees C and incision occurred diachronously during the Cenozoic. Y1 - 2009 UR - http://geology.gsapubs.org/ U6 - https://doi.org/10.1130/G25698a.1 SN - 0091-7613 ER - TY - JOUR A1 - Carrapa, Barbara A1 - Bywater-Reyes, Sharon A1 - DeCelles, Peter G. A1 - Mortimer, Estelle A1 - Gehrels, George E. T1 - Late Eocene-Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25 degrees-26 degrees S) regional implications for Andean orogenic wedge development JF - Basin research N2 - Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U-Pb geochronological data from EocenePliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (PucaraAngastaco and La Vina areas) provide an Eocene (ca.similar to 38 similar to Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca.similar to 14 similar to Ma and the coarse-grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge-top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial-lacustrine intramontane setting. By ca.similar to 4 similar to Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge-top depozone, influenced by thick-skinned deformation and re-activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre-Eocene strata (Santa Barbara Subgroup) within the region. Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2117.2011.00519.x SN - 0950-091X VL - 24 IS - 3 SP - 249 EP - 268 PB - Wiley-Blackwell CY - Malden ER -