TY - JOUR A1 - Kellis, Eleftherios A1 - Ellinoudis, Athanasios A1 - Intziegianni, Konstantina T1 - Reliability of sonographic assessment of biceps femoris distal tendon strain during passive stretching JF - Ultrasound in Medicine & Biology N2 - The purpose of this study was to determine the intra-rater, inter-examiner and inter-observer reliability of biceps femoris long head (BFlh) tendon strain using ultrasound imaging. Nineteen patients (age: 20.4 +/- 0.35 y) were tested twice with a 1-wk interval. Each session included passive stretching from three different hip positions. Tests were performed independently by two examiners while BFlh tendon displacement (mm) and strain (%) were manually extracted from ultrasound video footages by two observers. Intra-rater comparisons revealed an intra-class correlation coefficient (ICC2,1) range of 0.87 to 0.98 and a variability less than 4.74%. Interexaminer comparisons revealed an ICC2,1 range of 0.83 to 0.99 and less than 4.69% variability. Inter-observer ICCs ranged from 0.93 to 0.97 with variability less than 4.89%. Using a well-defined scanning protocol, two experienced examiners attained high levels of intra-rater agreement, with similarly excellent results for inter-rater and inter-observer reliability for BFlh tendon displacement and strain. (E-mail: ekellis@phed-sr.auth.gr) (C) 2017 World Federation for Ultrasound in Medicine & Biology. KW - Hamstring KW - Tendon KW - Strain injury KW - Ultrasound KW - Imaging KW - Muscle Y1 - 2017 U6 - https://doi.org/10.1016/j.ultrasmedbio.2017.04.018 SN - 0301-5629 SN - 1879-291X VL - 43 SP - 1769 EP - 1779 PB - Elsevier CY - New York ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez-del-Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis JF - European journal of applied physiology N2 - We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (-6.4 %, effect size = -0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. KW - Exercise KW - Muscle KW - Force KW - Power KW - Skill KW - Reflex KW - Endocrine KW - Metabolism Y1 - 2015 U6 - https://doi.org/10.1007/s00421-015-3194-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 8 SP - 1605 EP - 1625 PB - Springer CY - New York ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER -