TY - GEN A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analía M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - López-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andrés A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Aguilar, José Luis A1 - MacPhee, Ross D.E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 793 KW - ancient DNA KW - evolutionary history KW - genome sequence KW - reveals KW - contamination KW - alignment KW - reads KW - bones Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440801 SN - 1866-8372 IS - 793 ER - TY - GEN A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 505 KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422555 SN - 1866-8372 IS - 505 ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations JF - BMC Evolutionary Biology N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2018 U6 - https://doi.org/10.1186/s12862-018-1268-0 SN - 1471-2148 VL - 18 IS - 156 PB - BioMed Central und Springer CY - London, Berlin und Heidelberg ER - TY - GEN A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - Gonzalez-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA BT - technical advances and conceptual shifts T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 908 KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438816 SN - 1866-8372 IS - 908 SP - 284 EP - 295 ER -