TY - JOUR A1 - Geyer, Juliane A1 - Kiefer, Iris A1 - Kreft, Stefan A1 - Chavez, Veronica A1 - Salafsky, Nick A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Classification of climate-change-induced stresses on biological diversity JF - Conservation biology : the journal of the Society for Conservation Biology N2 - Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. KW - adaptation of conservation strategies KW - adaptive management KW - climate change KW - conservation planning KW - conservation targets KW - hierarchical framework KW - threats to biological diversity Y1 - 2011 U6 - https://doi.org/10.1111/j.1523-1739.2011.01676.x SN - 0888-8892 VL - 25 IS - 4 SP - 708 EP - 715 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Sarmento, Juliano Sarmento A1 - Jeltsch, Florian A1 - Thuiller, Wilfried A1 - Higgins, Steven A1 - Midgley, Guy F. A1 - Rebelo, Anthony G. A1 - Rouget, Mathieu A1 - Schurr, Frank Martin T1 - Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae JF - Diversity & distributions : a journal of biological invasions and biodiversity N2 - Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography. KW - biodiversity refugia KW - CFR Proteaceae KW - climate change KW - demographic properties KW - habitat loss KW - local abundances KW - process-based range models KW - range filling KW - range size KW - species distribution models Y1 - 2013 U6 - https://doi.org/10.1111/ddi.12011 SN - 1366-9516 VL - 19 IS - 4 SP - 363 EP - 376 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER -