TY - JOUR A1 - Quandt, Dennis A1 - Trumbull, Robert B. A1 - Altenberger, Uwe A1 - Cardona, Agustin A1 - Romer, Rolf L. A1 - Bayona, Germán A. A1 - Ducea, Mihai N. A1 - Valencia, Victor A1 - Vasquez, Monica A1 - Cortes, Elizabeth A1 - Guzman, Georgina T1 - The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications JF - Journal of South American earth sciences N2 - The Sierra Nevada de Santa Marta in NW Colombia is an isolated massif at the northernmost end of the Andes chain near the boundary with the Caribbean plate. Previous geologic mapping and K-Ar dating have shown that Jurassic plutonic and volcanic units make up a large part of the Santa Marta Massif (SMM). These rocks have been considered to be part of a Jurassic magmatic arc extending from NW Colombia to northern Chile, but without any geochemical basis for comparison. This paper reports on a geochemical and Sr-Nd-Pb isotope study of the Jurassic rocks in the SMM and provides 12 new U-Pb zircon ages from in-situ laser ICP-MS dating. The plutonic and volcanic units span a range from 45 to 78 wt.% SiO2, with a dominance of intermediate to felsic compositions with SiO2 > 57 wt.%. They classify as calc-alkaline, medium to high-K, metaluminous rocks with trace-element features typical for arc-derived magma series. In terms of their major and trace-element compositions, the SMM Jurassic units overlap with contemporary plutonic and volcanic rocks from other regions of the Central and Eastern Cordilleras of Colombia, and confirm an arc affinity. The new U-Pb ages range from 176 +/- 1 Ma to 192 +/- 2 Ma (n = 12), with most between 180 and 188 Ma (n = 7). The initial Sr isotope ratios (at 180 Ma) are between 0.7012 and 0.7071 (n = 29), with 3 outliers attributed to mobilization of Rb and/or Sr, Nearly all samples have negative( )epsilon Nd-(180) values between - 10.3 and 0.0 (n = 30), the two exceptions being only slightly positive (1.1 and 1.9). Measured Pb isotope ratios fall in a narrow range, with Pb-206/Pb-204 from 18.02 to 19.95, (207) Pb/(204) Pb from 15.56 to 15.67 and Pb-208/Pb-204 from 37.76 to 39.04 (n = 28). In the regional context of previous studies, these results confirm early Jurassic ages and an arc affinity for the widespread magmatism exposed in the eastern and northeastern Colombian Andes. We also note patterns in the distribution and composition of magmas. The magmatic activity in the Central Cordillera tends to be younger than in the Eastern Cordillera and is spatially more restricted to the vicinity of regional fault systems. In terms of composition, Jurassic igneous rocks in the Eastern Cordillera have systematically lower epsilon Nd-(180) values than those from the Central Cordillera, whereas the Pb isotope ratios overlap. We ascribe the Nd isotope variations to heterogeneity in the mantle source and/or degree of crustal contamination, whereas the Pb isotope ratios are crust-dominated and similar throughout the region. The spatio-temporal and compositional evolution of Jurassic magmatic rocks in the Northern Andes reflect the major plate kinematic readjustment between the Triassic and the Early Jurassic in the proto-Andean margin. KW - Jurassic arc KW - Northern Andes KW - Sr-Nd-Pb isotopes KW - Geochronology Y1 - 2018 U6 - https://doi.org/10.1016/j.jsames.2018.06.019 SN - 0895-9811 VL - 86 SP - 216 EP - 230 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Desanois, Louis A1 - Lüders, Volker A1 - Niedermann, Samuel A1 - Trumbull, Robert B. T1 - Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina BT - fluid inclusion and noble gas isotopic constraints JF - Chemical geology : official journal of the European Association for Geochemistry N2 - The Pirquitas Sn-Ag-(Zn) deposit in northwestern Argentina is thought to be an analogue to the Miocene polymetallic epithermal Sn-Ag deposits of the southern Bolivian Tin Belt, but little is known in detail about the origin and evolution of ore-forming fluids at Pirquitas. This paper reports on a microthermometric study of fluid inclusions in quartz, sphalerite, Ag-Sn sulfides, and Ag-rich sulfosalts using transmitted near infrared and visible light, combined with noble gas isotope analyses of fluids released from mineral separates. The study focused on the vein-hosted mineralization, which formed during two major mineralization events, whereby the first event I comprises two stages (I-1 and I-2). All studied minerals exclusively contain aqueous two-phase inclusions, indicating that the ore-forming fluids did not undergo two-phase phase separation (boiling). Salinity of fluid inclusions in I-1 quartz that precipitated along with pyrite and pyrrhotite ranges between 0 and 7.5 wt% NaCl equiv. and homogenization temperatures (Th) are between 233 and 370 degrees C. Stage I-2 is characterized by abundant Sn-Ag-Pb-Zn-sulfides and a variety of Ag-rich sulfosalts. Fluid inclusions in stage I-2 Ag-Sn sulfides have salinities up to 10.6 wt% NaCl equiv. and Th between 213 and 274 degrees C. The deposition of stage I-2 ore is likely related to a new pulse of saline magmatic fluids to the hydrothermal system. The mineralization event II deposited the richest Ag ores at Pirquitas. Colloform sphalerite and pyrargyrite deposited during event II contain two-phase aqueous fluid inclusions with homogenization temperatures between 190 and 252 degrees C and salinities between 0.9 and 4.3 wt% NaCl equiv. Noble gas concentrations and isotopic compositions of ore-hosted fluid inclusions were determined from crushing hand-picked ore minerals from both mineralization events. With one exception, all samples yielded He-3/He-4 ratios between 1.9 and 4.1 Ra, which is within the range of published data from the volcanic arc and somewhat higher than typical values of meteoric water-derived hot-springs in the region. This demonstrates a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine region. Taking the noble gas evidence for a magmatic fluid source, we interpret the trends of decreasing Th and salinity values in fluid inclusions from events I and II to represent waning of the magmatic-hydrothermal system and/or increased admixing of meteoric water to the magmatic fluids. KW - Bolivian tin belt KW - Pirquitas KW - Epithermal Ag-Sn deposits KW - Fluid inclusions KW - Noble gas Y1 - 2018 U6 - https://doi.org/10.1016/j.chemgeo.2018.04.024 SN - 0009-2541 SN - 1872-6836 VL - 508 SP - 78 EP - 91 PB - Elsevier CY - Amsterdam ER -