TY - GEN A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - Yin, Liang-Hong A1 - Yun, Chen A1 - Zeng, Shufei A1 - Chu, Chang A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Cord blood Lysophosphatidylcholine 16:1 is positively associated with birth weight T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background/Aims: Impaired birth outcomes, like low birth weight, have consistently been associated with increased disease susceptibility to hypertension in later life. Alterations in the maternal or fetal metabolism might impact on fetal growth and influence birth outcomes. Discerning associations between the maternal and fetal metabolome and surrogate parameters of fetal growth could give new insight into the complex relationship between intrauterine conditions, birth outcomes, and later life disease susceptibility. Methods: Using flow injection tandem mass spectrometry, targeted metabolomics was performed in serum samples obtained from 226 mother/child pairs at delivery. Associations between neonatal birth weight and concentrations of 163 maternal and fetal metabolites were analyzed. Results: After FDR adjustment using the Benjamini-Hochberg procedure lysophosphatidylcholines (LPC) 14:0, 16:1, and 18:1 were strongly positively correlated with birth weight. In a stepwise linear regression model corrected for established confounding factors of birth weight, LPC 16: 1 showed the strongest independent association with birth weight (CI: 93.63 - 168.94; P = 6.94x10(-11)). The association with birth weight was stronger than classical confounding factors such as offspring sex (CI: - 258.81- -61.32; P = 0.002) and maternal smoking during pregnancy (CI: -298.74 - -29.51; P = 0.017). Conclusions: After correction for multiple testing and adjustment for potential confounders, LPC 16:1 showed a very strong and independent association with birth weight. The underlying molecular mechanisms linking fetal LPCs with birth weight need to be addressed in future studies. (c) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 631 KW - metabolomics KW - Lysophosphatidylcholine KW - birth weight KW - DOHaD KW - hypertension KW - Type 2 Diabetes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424566 SN - 1866-8372 IS - 631 ER - TY - GEN A1 - Wang, Guang A1 - Li, Pei-zhi A1 - Zhang, Shi-yao A1 - Zhong, Shan A1 - Chu, Chang A1 - Zeng, Shufei A1 - Yan, Yu A1 - Cheng, Xin A1 - Chuai, Manli A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Lipopolysaccharides (LPS) Induced Angiogenesis During Chicken Embryogenesis is Abolished by Combined ETA/ETB Receptor Blockade T2 - Cellular Physiology and Biochemistry N2 - Background/Aims: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. Methods: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. Results: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. Conclusion: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade. (C) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 615 KW - Lipopolysaccharides (LPS) KW - Angiogenesis KW - Chicken chorioallantoic membrane (CAM) KW - Endothelin (ET) Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424552 SN - 1866-8372 IS - 615 ER -