TY - GEN A1 - Messerschmidt, Katrin A1 - Machens, Fabian A1 - Hochrein, Lena A1 - Naseri, Gita T1 - Orthogonal, light-inducible protein expression platform in yeast Sacchararomyces cerevisiae T2 - New biotechnology Y1 - 2018 U6 - https://doi.org/10.1016/j.nbt.2018.05.153 SN - 1871-6784 SN - 1876-4347 VL - 44 SP - S19 EP - S19 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Lukan, Tjaša A1 - Machens, Fabian A1 - Coll, Anna A1 - Baebler, Špela A1 - Messerschmidt, Katrin A1 - Gruden, Kristina T1 - Plant X-tender BT - an extension of the AssemblX system for the assembly and expression of multigene constructs in plants T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scarfree and sequence-independent multigene assembly strategy AssemblX,based on overlapdepended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 990 KW - ligation cloning extract KW - DNA cloning KW - synthetic biology KW - multiple genes KW - vector system KW - transformation KW - recombination KW - protein KW - RNA KW - Methylation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446281 SN - 1866-8372 IS - 990 ER - TY - JOUR A1 - Lukan, Tjaša A1 - Machens, Fabian A1 - Coll, Anna A1 - Baebler, Špela A1 - Messerschmidt, Katrin A1 - Gruden, Kristina T1 - Plant X-tender BT - an extension of the AssemblX system for the assembly and expression of multigene constructs in plants JF - PLOS ONE N2 - Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0190526 SN - 1932-6203 VL - 13 IS - 1 PB - Public Library of Science CY - San Fransisco ER -