TY - JOUR A1 - Zancolli, Giulia A1 - Baker, Timothy G. A1 - Barlow, Axel A1 - Bradley, Rebecca K. A1 - Calvete, Juan J. A1 - Carter, Kimberley C. A1 - de Jager, Kaylah A1 - Owens, John Benjamin A1 - Price, Jenny Forrester A1 - Sanz, Libia A1 - Scholes-Higham, Amy A1 - Shier, Liam A1 - Wood, Liam A1 - Wüster, Catharine E. A1 - Wüster, Wolfgang T1 - Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus x viridis Hybrid Zone in Southwestern New Mexico JF - Toxins N2 - Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter-and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species. KW - adaptation KW - Crotalus KW - evolution KW - hybridization KW - introgression KW - Mojave toxin KW - molecular evolution KW - venom Y1 - 2016 U6 - https://doi.org/10.3390/toxins8060188 SN - 2072-6651 VL - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Coraman, Emrah A1 - Dietz, Christian A1 - Hempel, Elisabeth A1 - Ghazaryan, Astghik A1 - Levin, Eran A1 - Presetnik, Primoz A1 - Zagmajster, Maja A1 - Mayer, Frieder T1 - Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mtDNA introgressions in secondary contacts JF - Journal of biogeography N2 - Aim There is an increasing evidence showing that species within various taxonomic groups have reticulate evolutionary histories with several cases of introgression events. Investigating the phylogeography of species complexes can provide insight into these introgressions, and when and where these hybridizations occurred. In this study, we investigate the biogeography of a widely distributed Western Palaearctic bat species complex, namely Myotis nattereri sensu lato. This complex exhibits high genetic diversity and in its western distribution range is composed of deeply diverged genetical lineages. However, little is known about the genetic structure of the eastern populations. We also infer the conservation and taxonomical implications of the identified genetic divergences. Taxon Myotis nattereri sensu lato including M. schaubi. Location Western Palaearctic. Methods We analysed 161 specimens collected from 67 locations and sequenced one mitochondrial and four nuclear DNA markers, and combined these with the available GenBank sequences. We used haplotype networks, PCA, t-SNE and Bayesian clustering algorithms to investigate the population structure and Bayesian trees to infer the phylogenetic relationship of the lineages. Results We identified deeply divergent genetical lineages. In some cases, nuclear and mitochondrial markers were discordant, which we interpret are caused by hybridization between lineages. We identified three such introgression events. These introgressions occurred when spatially separated lineages came into contact after range expansions. Based on the genetic distinction of the identified lineages, we suggest a revision in the taxonomy of this species group with two possible new species: M. hoveli and M. tschuliensis. Main conclusions Our findings suggest that the M. nattereri complex has a reticulate evolutionary history with multiple cases of hybridizations between some of the identified lineages. KW - cryptic species KW - glacial refugia KW - hybridization KW - introgression KW - range expansions KW - the Caucasus Y1 - 2019 U6 - https://doi.org/10.1111/jbi.13509 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 2 SP - 343 EP - 354 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Cahsan, Binia De A1 - Kiemel, Katrin A1 - Westbury, Michael V. A1 - Lauritsen, Maike A1 - Autenrieth, Marijke A1 - Gollmann, Günter A1 - Schweiger, Silke A1 - Stenberg, Marika A1 - Nyström, Per A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad JF - Ecology and Evolution N2 - Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation. KW - Bombina bombina KW - heat shock protein KW - introgression KW - major histocompatibility complex KW - scaled mass index Y1 - 2021 SN - 2045-7758 VL - 11 IS - 14 PB - John Wiley & Sons, Inc. CY - New Jersey ER -