TY - GEN A1 - Kowalski, Gabriele Joanna A1 - Grimm, Volker A1 - Herde, Antje A1 - Guenther, Anja A1 - Eccard, Jana T1 - Does Animal Personality Affect Movement in Habitat Corridors? BT - Experiments with Common Voles (Microtus arvalis) Using Different Corridor Widths T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Animal personality may affect an animal’s mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 747 KW - activity KW - animal personality KW - wildlife corridors KW - habitat connectivity KW - individual differences KW - rodents Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435770 SN - 1866-8372 IS - 747 ER - TY - JOUR A1 - Kowalski, Gabriele Joanna A1 - Grimm, Volker A1 - Herde, Antje A1 - Guenther, Anja A1 - Eccard, Jana T1 - Does Animal Personality Affect Movement in Habitat Corridors? BT - Experiments with Common Voles (Microtus arvalis) Using Different Corridor Widths JF - Animals N2 - Animal personality may affect an animal’s mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors. KW - activity KW - animal personality KW - wildlife corridors KW - habitat connectivity KW - individual differences KW - rodents Y1 - 2019 U6 - https://doi.org/10.3390/ani9060291 SN - 2076-2615 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Herde, Antje A1 - Eccard, Jana T1 - Consistency in boldness, activity and exploration at different stages of life N2 - Background: Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results: Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions: The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 376 KW - animal personality KW - behavioural type KW - Microtus arvalis KW - common vole KW - plasticity KW - consistency KW - repeatability Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401395 ER - TY - JOUR A1 - Gracceva, Giulia A1 - Herde, Antje A1 - Groothuis, Ton G. G. A1 - Koolhaas, Jaap M. A1 - Palme, Rupert A1 - Eccard, Jana T1 - Turning shy on a winter's day: Effects of season on personality and stress response in Microtus arvalis JF - Ethology N2 - Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk-taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer-born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress-induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season-related behavioural plasticity in which juveniles shift over the bold-shy axis. KW - animal personality KW - seasonal environment KW - photoperiod KW - juvenile plasticity KW - corticosterone Y1 - 2014 U6 - https://doi.org/10.1111/eth.12246 SN - 0179-1613 SN - 1439-0310 VL - 120 IS - 8 SP - 753 EP - 767 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1258 KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558866 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations JF - Ecology And Evolution N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8521 SN - 2045-7758 SP - 1 EP - 15 PB - John Wiley & Sons, Inc. CY - Vereinigte Staaten ER -