TY - GEN A1 - Tofelde, Stefanie A1 - Bernhardt, Anne A1 - Guerit, Laure A1 - Romans, Brian W. T1 - Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sediment archives in the terrestrial and marine realm are regularly analyzed to infer changes in climate, tectonic, or anthropogenic boundary conditions of the past. However, contradictory observations have been made regarding whether short period events are faithfully preserved in stratigraphic archives; for instance, in marine sediments offshore large river systems. On the one hand, short period events are hypothesized to be non-detectable in the signature of terrestrially derived sediments due to buffering during sediment transport along large river systems. On the other hand, several studies have detected signals of short period events in marine records offshore large river systems. We propose that this apparent discrepancy is related to the lack of a differentiation between different types of signals and the lack of distinction between river response times and signal propagation times. In this review, we (1) expand the definition of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size characteristics, (2) clarify the different types of ‘times’ and suggest a precise and consistent terminology for future use, and (3) compile and discuss factors influencing the times of signal transfer along sediment routing systems and how those times vary with hydraulic grain size characteristics. Unraveling different types of signals and distinctive time periods related to signal propagation addresses the discrepancies mentioned above and allows a more comprehensive exploration of event preservation in stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially derived sedimentary records. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1230 KW - signal propagation KW - landscape transience KW - source-to-sink KW - stratigraphy KW - response time Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-544431 SN - 1866-8372 SP - 1 EP - 26 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Bernhardt, Anne A1 - Guerit, Laure A1 - Romans, Brian W. T1 - Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience JF - Frontiers in Earth Science N2 - Sediment archives in the terrestrial and marine realm are regularly analyzed to infer changes in climate, tectonic, or anthropogenic boundary conditions of the past. However, contradictory observations have been made regarding whether short period events are faithfully preserved in stratigraphic archives; for instance, in marine sediments offshore large river systems. On the one hand, short period events are hypothesized to be non-detectable in the signature of terrestrially derived sediments due to buffering during sediment transport along large river systems. On the other hand, several studies have detected signals of short period events in marine records offshore large river systems. We propose that this apparent discrepancy is related to the lack of a differentiation between different types of signals and the lack of distinction between river response times and signal propagation times. In this review, we (1) expand the definition of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size characteristics, (2) clarify the different types of ‘times’ and suggest a precise and consistent terminology for future use, and (3) compile and discuss factors influencing the times of signal transfer along sediment routing systems and how those times vary with hydraulic grain size characteristics. Unraveling different types of signals and distinctive time periods related to signal propagation addresses the discrepancies mentioned above and allows a more comprehensive exploration of event preservation in stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially derived sedimentary records. KW - signal propagation KW - landscape transience KW - source-to-sink KW - stratigraphy KW - response time Y1 - 2021 U6 - https://doi.org/10.3389/feart.2021.628315 SN - 2296-6463 VL - 9 SP - 1 EP - 26 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - JOUR A1 - Stright, Lisa A1 - Bernhardt, Anne A1 - Boucher, Alexandre T1 - DFTopoSim modeling topographically-controlled deposition of subseismic scale sandstone packages within a mass transport dominated deep-water channel belt JF - Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences N2 - Facies bodies in geostatistical models of deep-water depositional environments generally represent channel-levee-overbank-lobe morphologies. Such models adequately capture one set of the erosional and depositional processes resulting from turbidity currents traveling downslope to the ocean basin floor. However, depositional morphologies diverge from the straight forward channel-levee-overbank-lobe paradigm when the topography of the slope or the shape of the basin impacts the timing and magnitude of turbidity current deposition. Subaqueous mass-transport-deposits (MTDs) present the need for an exception to the channel-levee-overbank-lobe archetype. Irregular surface topography of subaqueous MTDs can play a primary role in controlling sand deposition from turbidity currents. MTD topography creates mini-basins in which sand accumulates in irregularly-shaped deposits. These accumulations are difficult to laterally correlate using well-log data due to their variable and unpredictable shape and size. Prediction is further complicated because sandstone bodies typical of this setting are difficult to resolve in seismic-reflection data. An event-based model is presented, called DFTopoSim, which simulates debris flows and turbidity currents. The accommodation space on top of and between debris flow lobes is filled in by sand from turbidity currents. When applied to a subsurface case in the Molasse Basin of Upper Austria, DFTopoSim predicts sand packages consistent with observations from core, well, and seismic data and the interpretation of the sedimentologic processes. DFTopoSim expands the set of available geostatistical deep-water depositional models beyond the standard channel-levee-overbank-lobe model. KW - Geostatistics KW - Event-based modeling KW - Facies modeling KW - Deep-marine sedimentology KW - Submarine channel Y1 - 2013 U6 - https://doi.org/10.1007/s11004-013-9444-7 SN - 1874-8961 VL - 45 IS - 3 SP - 277 EP - 296 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Stolle, Amelie A1 - Schwanghart, Wolfgang A1 - Andermann, Christoff A1 - Bernhardt, Anne A1 - Fort, Monique A1 - Jansen, John D. A1 - Wittmann, Hella A1 - Merchel, Silke A1 - Rugel, Georg A1 - Adhikari, Basanta Raj A1 - Korup, Oliver T1 - Protracted river response to medieval earthquakes JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Mountain rivers respond to strong earthquakes by rapidly aggrading to accommodate excess sediment delivered by co-seismic landslides. Detailed sediment budgets indicate that rivers need several years to decades to recover from seismic disturbances, depending on how recovery is defined. We examine three principal proxies of river recovery after earthquake-induced sediment pulses around Pokhara, Nepal's second largest city. Freshly exhumed cohorts of floodplain trees in growth position indicate rapid and pulsed sedimentation that formed a fan covering 150 km2 in a Lesser Himalayan basin with tens of metres of debris between the 11th and 15th centuries AD. Radiocarbon dates of buried trees are consistent with those of nearby valley deposits linked to major medieval earthquakes, such that we can estimate average rates of re-incision since. We combine high-resolution digital elevation data, geodetic field surveys, aerial photos, and dated tree trunks to reconstruct geomorphic marker surfaces. The volumes of sediment relative to these surfaces require average net sediment yields of up to 4200 t km–2 yr–1 for the 650 years since the last inferred earthquake-triggered sediment pulse. The lithological composition of channel bedload differs from that of local bedrock, confirming that rivers are still mostly evacuating medieval valley fills, locally incising at rates of up to 0.2 m yr–1. Pronounced knickpoints and epigenetic gorges at tributary junctions further illustrate the protracted fluvial response; only the distal portions of the earthquake-derived sediment wedges have been cut to near their base. Our results challenge the notion that mountain rivers recover speedily from earthquakes within years to decades. The valley fills around Pokhara show that even highly erosive Himalayan rivers may need more than several centuries to adjust to catastrophic perturbations. Our results motivate some rethinking of post-seismic hazard appraisals and infrastructural planning in active mountain regions. KW - fluvial response KW - sediment yield KW - earthquakes KW - Nepal KW - Himalaya Y1 - 2018 U6 - https://doi.org/10.1002/esp.4517 SN - 0197-9337 SN - 1096-9837 VL - 44 IS - 1 SP - 331 EP - 341 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Stolle, Amelie A1 - Bernhardt, Anne A1 - Schwanghart, Wolfgang A1 - Hoelzmann, Philipp A1 - Adhikari, Basanta R. A1 - Fort, Monique A1 - Korup, Oliver T1 - Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal JF - Quaternary science reviews : the international multidisciplinary research and review journal KW - Catastrophic valley infill KW - Great Himalayan earthquakes KW - Radiocarbon age dating KW - Provenance analysis KW - Paleoseismology KW - Nepal Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.10.015 SN - 0277-3791 VL - 177 SP - 88 EP - 103 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Bernhardt, Anne A1 - Stolle, Amelie A1 - Hoelzmann, Philipp A1 - Adhikari, Basanta R. A1 - Andermann, Christoff A1 - Tofelde, Stefanie A1 - Merchel, Silke A1 - Rugel, Georg A1 - Fort, Monique A1 - Korup, Oliver T1 - Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya JF - Science N2 - Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Y1 - 2016 U6 - https://doi.org/10.1126/science.aac9865 SN - 0036-8075 SN - 1095-9203 VL - 351 SP - 147 EP - 150 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Hülscher, Julian A1 - Sobel, Edward R. A1 - Kallnik, Niklas A1 - Hoffmann, J. Elis A1 - Millar, Ian L. A1 - Hartmann, Kai A1 - Bernhardt, Anne T1 - Apatites record sedimentary provenance change 4-5 myrs before clay in the Oligocene/Miocene Alpine molasse JF - Frontiers in Earth Science N2 - Extracting information about past tectonic or climatic environmental changes from sedimentary records is a key objective of provenance research. Interpreting the imprint of such changes remains challenging as signals might be altered in the sediment-routing system. We investigate the sedimentary provenance of the Oligocene/Miocene Upper Austrian Northern Alpine Foreland Basin and its response to the tectonically driven exhumation of the Tauern Window metamorphic dome (28 +/- 1 Ma) in the Eastern European Alps by using the unprecedented combination of Nd isotopic composition of bulk-rock clay-sized samples and partly previously published multi-proxy (Nd isotopic composition, trace-element geochemistry, U-Pb dating) sand-sized apatite single-grain analysis. The basin offers an excellent opportunity to investigate environmental signal propagation into the sedimentary record because comprehensive stratigraphic and seismic datasets can be combined with present research results. The bulk-rock clay-sized fraction epsilon Nd values of well-cutting samples from one well on the northern basin slope remained stable at similar to-9.7 from 27 to 19 Ma but increased after 19 Ma to similar to-9.1. In contrast, apatite single-grain distributions, which were extracted from 22 drill-core samples, changed significantly around 23.3 Ma from apatites dominantly from low-grade (100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north-south oriented conglomerate lenses are contemporaneous within error limits (ca. 8482 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 8782 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 9082 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. KolmogorovSmirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen-parallel ocean basins. Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2117.2011.00528.x SN - 0950-091X VL - 24 IS - 3 SP - 269 EP - 294 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bernhardt, Anne A1 - Hebbeln, Dierk A1 - Regenberg, Marcus A1 - Lueckge, Andreas A1 - Strecker, Manfred T1 - Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin JF - Geology N2 - Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29 degrees-40 degrees S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29 degrees-33 degrees S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36 degrees-40 degrees S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobio river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances. Y1 - 2016 U6 - https://doi.org/10.1130/G37594.1 SN - 0091-7613 SN - 1943-2682 VL - 44 SP - 295 EP - 298 PB - American Institute of Physics CY - Boulder ER -