TY - JOUR A1 - Allan, Eric A1 - Bossdorf, Oliver A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Tscharntke, Teja A1 - Blüthgen, Nico A1 - Bellach, Michaela A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Chatzinotas, Antonis A1 - Christ, Sabina A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Fischer, Christiane A1 - Friedl, Thomas A1 - Glaser, Karin A1 - Hallmann, Christine A1 - Hodac, Ladislav A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klein, Alexandra Maria A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Nacke, Heiko A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Rothenwoehrer, Christoph A1 - Schally, Peter A1 - Scherber, Christoph A1 - Schulze, Waltraud X. A1 - Socher, Stephanie A. A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Türke, Manfred A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Gockel, Sonja A1 - Gorke, Martin A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Pfeiffer, Simone A1 - König-Ries, Birgitta A1 - Buscot, Francois A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interannual variation in land-use intensity enhances grassland multidiversity JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. KW - biodiversity loss KW - agricultural grasslands KW - Biodiversity Exploratories Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1312213111 SN - 0027-8424 VL - 111 IS - 1 SP - 308 EP - 313 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Allan, Eric A1 - Manning, Pete A1 - Alt, Fabian A1 - Binkenstein, Julia A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Böhm, Stefan A1 - Grassein, Fabrice A1 - Hölzel, Norbert A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Morris, E. Kathryn A1 - Oelmann, Yvonne A1 - Prati, Daniel A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Solly, Emily A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffen-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Fischer, Markus T1 - Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition JF - Ecology letters N2 - Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. KW - Biodiversity-ecosystem functioning KW - ecosystem services KW - global change KW - land use KW - multifunctionality Y1 - 2015 U6 - https://doi.org/10.1111/ele.12469 SN - 1461-023X SN - 1461-0248 VL - 18 IS - 8 SP - 834 EP - 843 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Allan, Eric A1 - Weisser, Wolfgang W. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weigelt, Alexandra A1 - Roscher, Christiane A1 - Baade, Jussi A1 - Barnard, Romain L. A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fergus, Alexander J. F. A1 - Gleixner, Gerd A1 - Gubsch, Marlen A1 - Halle, Stefan A1 - Klein, Alexandra Maria A1 - Kertscher, Ilona A1 - Kuu, Annely A1 - Lange, Markus A1 - Le Roux, Xavier A1 - Meyer, Sebastian T. A1 - Migunova, Varvara D. A1 - Milcu, Alexandru A1 - Niklaus, Pascal A. A1 - Oelmann, Yvonne A1 - Pasalic, Esther A1 - Petermann, Jana S. A1 - Poly, Franck A1 - Rottstock, Tanja A1 - Sabais, Alexander C. W. A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Steinbeiss, Sibylle A1 - Schwichtenberg, Guido A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Wilcke, Wolfgang A1 - Wirth, Christian A1 - Schmid, Bernhard T1 - A comparison of the strength of biodiversity effects across multiple functions JF - Oecologia N2 - In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination. KW - Bottom-up effects KW - Carbon cycling KW - Ecological synthesis KW - Ecosystem processes KW - Grasslands KW - Jena experiment KW - Nitrogen cycling Y1 - 2013 U6 - https://doi.org/10.1007/s00442-012-2589-0 SN - 0029-8549 VL - 173 IS - 1 SP - 223 EP - 237 PB - Springer CY - New York ER - TY - JOUR A1 - Birkhofer, Klaus A1 - Schöning, Ingo A1 - Alt, Fabian A1 - Herold, Nadine A1 - Klarner, Bernhard A1 - Maraun, Mark A1 - Marhan, Sven A1 - Oelmann, Yvonne A1 - Wubet, Tesfaye A1 - Yurkov, Andrey A1 - Begerow, Dominik A1 - Berner, Doreen A1 - Buscot, Francois A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Ehnes, Roswitha B. A1 - Erdmann, Georgia A1 - Fischer, Christiane A1 - Fösel, Baerbel A1 - Groh, Janine A1 - Gutknecht, Jessica A1 - Kandeler, Ellen A1 - Lang, Christa A1 - Lohaus, Gertrud A1 - Meyer, Annabel A1 - Nacke, Heiko A1 - Näther, Astrid A1 - Overmann, Jörg A1 - Polle, Andrea A1 - Pollierer, Melanie M. A1 - Scheu, Stefan A1 - Schloter, Michael A1 - Schulze, Ernst-Detlef A1 - Schulze, Waltraud X. A1 - Weinert, Jan A1 - Weisser, Wolfgang W. A1 - Wolters, Volkmar A1 - Schrumpf, Marion T1 - General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types JF - PLoS one N2 - Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0043292 SN - 1932-6203 VL - 7 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Blüthgen, Nico A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Hoelzel, Norbert A1 - Alt, Fabian A1 - Boch, Steffen A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Müller, Jörg A1 - Nieschulze, Jens A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Schumacher, Uta A1 - Socher, Stephanie A. A1 - Wells, Konstans A1 - Birkhofer, Klaus A1 - Buscot, Francois A1 - Oelmann, Yvonne A1 - Rothenwöhrer, Christoph A1 - Scherber, Christoph A1 - Tscharntke, Teja A1 - Weiner, Christiane N. A1 - Fischer, Markus A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes. KW - Agro-ecosystems KW - Biodiversity exploratories KW - Grassland management KW - Land-use impacts KW - Livestock density KW - Meadows KW - Nitrogen KW - Pastures Y1 - 2012 U6 - https://doi.org/10.1016/j.baae.2012.04.001 SN - 1439-1791 VL - 13 IS - 3 SP - 207 EP - 220 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Boch, Steffen A1 - Prati, Daniel A1 - Müller, Jörg A1 - Socher, Stephanie A1 - Baumbach, Henryk A1 - Buscot, Francois A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Hessenmöller, Dominik A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, K. Eduard A1 - Pfeiffer, Simone A1 - Pommer, Ulf A1 - Schöning, Ingo A1 - Schulze, Ernst-Detlef A1 - Seilwinder, Claudia A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus T1 - High plant species richness indicates management-related disturbances rather than the conservation status of forests JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances. KW - Biodiversity Exploratories KW - Coniferous plantations KW - Disturbance KW - Ellenberg indicator values KW - Forest management KW - Selection vs. age-class forests KW - Silviculture KW - Standing biomass KW - Typical forest species KW - Unmanaged vs. managed forests Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.06.001 SN - 1439-1791 VL - 14 IS - 6 SP - 496 EP - 505 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Fischer, Markus A1 - Bossdorf, Oliver A1 - Gockel, Sonja A1 - Haensel, Falk A1 - Hemp, Andreas A1 - Hessenmoeller, Dominik A1 - Korte, Gunnar A1 - Nieschulze, Jens A1 - Pfeiffer, Simone A1 - Prati, Daniel A1 - Renner, Swen A1 - Schoening, Ingo A1 - Schumacher, Uta A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Implementing large-scale and long-term functional biodiversity research : the biodiversity exploratories N2 - Functional biodiversity research explores drivers and functional consequences of biodiversity changes Land use change is a major driver of changes of biodiversity and of biogeochemical and biological ecosystem processes and services However, land use effects on genetic and species diversity are well documented only for a few taxa and trophic networks We hardly know how different components of biodiversity and their responses to land use change are interrelated and very little about the simultaneous, and interacting, effects of land use on multiple ecosystem processes and services Moreover, we do not know to what extent land use effects on ecosystem processes and services are mediated by biodiversity change Thus, overall goals are on the one hand to understand the effects of land use on biodiversity and on the other to understand the modifying role of biodiversity change for land-use effects on ecosystem processes, including biogeochemical cycles To comprehensively address these Important questions, we recently established a new large-scale and long-term project for functional biodiversity, the Biodiversity Exploratories (www biodiversity-exploratories de) They comprise a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests They serve as a joint research platform for currently 40 projects involving over 300 people studying various aspects of the relationships between land use biodiversity and ecosystem processes through monitoring, comparative observation and experiments We introduce guiding questions, concept and design of the Biodiversity Exploratories - including main aspects of selection and implementation of field plots and project structure - and we discuss the significance of this approach for further functional biodiversity research This includes the crucial relevance of a common study design encompassing variation in both drivers and outcomes of biodiversity change and ecosystem processes, the interdisciplinary integration of biodiversity and ecosystem researchers, the training of a new generation of integrative biodiversity researchers, and the stimulation of functional biodiversity research in real landscape contexts, in Germany and elsewhere. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/14391791 U6 - https://doi.org/10.1016/j.baae.2010.07.009 SN - 1439-1791 ER - TY - JOUR A1 - Gossner, Martin M. A1 - Lewinsohn, Thomas M. A1 - Kahl, Tiemo A1 - Grassein, Fabrice A1 - Boch, Steffen A1 - Prati, Daniel A1 - Birkhofer, Klaus A1 - Renner, Swen C. A1 - Sikorski, Johannes A1 - Wubet, Tesfaye A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Jorge, Leonardo Re A1 - Jung, Kirsten A1 - Keyel, Alexander C. A1 - Klein, Alexandra-Maria A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Müller, Jörg A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Penone, Caterina A1 - Perovic, David J. A1 - Purschke, Oliver A1 - Schall, Peter A1 - Socher, Stephanie A. A1 - Sonnemann, Ilja A1 - Tschapka, Marco A1 - Tscharntke, Teja A1 - Türke, Manfred A1 - Venter, Paul Christiaan A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Wolters, Volkmar A1 - Wurst, Susanne A1 - Westphal, Catrin A1 - Fischer, Markus A1 - Weisser, Wolfgang W. A1 - Allan, Eric T1 - Land-use intensification causes multitrophic homogenization of grassland communities JF - Nature : the international weekly journal of science N2 - Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification. Y1 - 2016 U6 - https://doi.org/10.1038/nature20575 SN - 0028-0836 SN - 1476-4687 VL - 540 SP - 266 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Gossner, Martin M. A1 - Pasalic, Esther A1 - Lange, Markus A1 - Lange, Patricia A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Differential responses of herbivores and herbivory to management in temperate Eeuropean beech JF - PLoS one N2 - Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0104876 SN - 1932-6203 VL - 9 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Boch, Steffen A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Lange, Markus A1 - Müller, Jörg A1 - Oelmann, Yvonne A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Socher, Stephanie A. A1 - Türke, Manfred A1 - Weisser, Wolfgang W. A1 - Fischer, Markus A1 - Hölzel, Norbert T1 - Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility? JF - Agriculture, ecosystems & environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere N2 - Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity. KW - Agri-environmental schemes KW - Fertilization KW - Fodder quality KW - Land-use intensity KW - Nitrogen KW - Biomass nutrient concentrations KW - Organic farming KW - Phosphorus KW - Species richness KW - Nutrient availability Y1 - 2013 U6 - https://doi.org/10.1016/j.agee.2013.05.019 SN - 0167-8809 VL - 177 IS - 3 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lange, Markus A1 - Türke, Manfred A1 - Pasalic, Esther A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Weisser, Wolfgang W. A1 - Gossner, Martin M. T1 - Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure JF - Forest ecology and management N2 - Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies. (C) 2014 Elsevier B.V. All rights reserved. KW - Beech forest KW - Biodiversity Exploratories KW - Conifer plantations KW - Habitat preferences KW - Insects KW - Land use Y1 - 2014 U6 - https://doi.org/10.1016/j.foreco.2014.06.012 SN - 0378-1127 SN - 1872-7042 VL - 329 SP - 166 EP - 176 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Manning, Pete A1 - Gossner, Martin M. A1 - Bossdorf, Oliver A1 - Allan, Eric A1 - Zhang, Yuan-Ye A1 - Prati, Daniel A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra Maria A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Müller, Jörg A1 - Pasalic, Esther A1 - Socher, Stephanie A. A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Weiner, Christiane A1 - Werner, Michael A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa JF - Ecology : a publication of the Ecological Society of America N2 - Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35% decrease in rand 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. KW - Biodiversity indicators KW - correlation KW - fertilization KW - grassland management KW - grazing KW - land-use change KW - land-use intensity KW - mowing KW - multidiversity KW - multitrophic interactions Y1 - 2015 U6 - https://doi.org/10.1890/14-1307.1 SN - 0012-9658 SN - 1939-9170 VL - 96 IS - 6 SP - 1492 EP - 1501 PB - Wiley CY - Washington ER - TY - JOUR A1 - Marcus, Tamar A1 - Boch, Steffen A1 - Durka, Walter A1 - Fischer, Markus A1 - Gossner, Martin M. A1 - Müller, Jörg A1 - Schöning, Ingo A1 - Weisser, Wolfgang W. A1 - Drees, Claudia A1 - Assmann, Thorsten T1 - Living in Heterogeneous Woodlands - Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle? JF - PLoS one N2 - Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwabische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0144217 SN - 1932-6203 VL - 10 IS - 12 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Marcus, Tamar A1 - Boch, Steffen A1 - Durka, Walter A1 - Gossner, Martin M. A1 - Müller, Jörg A1 - Schöning, Ingo A1 - Weisser, Wolfgang W. A1 - Drees, Claudia A1 - Assmann, Thorsten T1 - Living in heterogeneous woodlands BT - are habitat continuity or quality drivers of genetic variability in a flightless ground beetle? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwabische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 508 KW - forest management intensity KW - lichen Lobaria pulmonaria KW - past land-use KW - carabid beetles KW - distribution patterns KW - environmental-factors KW - conifer plantations KW - population-genetics KW - species composition KW - plant diversity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408451 SN - 1866-8372 IS - 508 ER - TY - JOUR A1 - Meyer, Sebastian T. A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Hertzog, Lionel A1 - Hillebrand, Helmut A1 - Milcu, Alexandru A1 - Pompe, Sven A1 - Abbas, Maike A1 - Bessler, Holger A1 - Buchmann, Nina A1 - De Luca, Enrica A1 - Engels, Christof A1 - Fischer, Markus A1 - Gleixner, Gerd A1 - Hudewenz, Anika A1 - Klein, Alexandra-Maria A1 - de Kroon, Hans A1 - Leimer, Sophia A1 - Loranger, Hannah A1 - Mommer, Liesje A1 - Oelmann, Yvonne A1 - Ravenek, Janneke M. A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Staudler, Andrea A1 - Strecker, Tanja A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Vogel, Anja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity JF - Ecosphere : the magazine of the International Ecology University KW - biodiversity ecosystem functioning (BEF) KW - ecosystem processes KW - grassland KW - mechanism KW - plant productivity KW - plant species richness KW - temporal effects KW - trophic interactions Y1 - 2016 U6 - https://doi.org/10.1002/ecs2.1619 SN - 2150-8925 VL - 7 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Meyer, Sebastian Tobias A1 - Ptacnik, Robert A1 - Hillebrand, Helmut A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fischer, Markus A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Oelmann, Yvonne A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Temperton, Vicky M. A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Biodiversity-multifunctionality relationships depend on identity and number of measured functions JF - Nature Ecology & Evolution N2 - Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0391-4 SN - 2397-334X VL - 2 IS - 1 SP - 44 EP - 49 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Näther, Astrid A1 - Fösel, Bärbel U. A1 - Nägele, Verena A1 - Wüst, Pia K. A1 - Weinert, Jan A1 - Bonkowski, Michael A1 - Alt, Fabian A1 - Oelmann, Yvonne A1 - Polle, Andrea A1 - Lohaus, Gertrud A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Pfeiffer, Simone A1 - Renner, Swen A1 - Schöning, Ingo A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus A1 - Overmann, Jörg A1 - Friedrich, Michael W. T1 - Environmental factors affect acidobacterial communities below the subgroup level in Grassland and Forest Soils JF - Applied and environmental microbiology N2 - In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered. Y1 - 2012 U6 - https://doi.org/10.1128/AEM.01325-12 SN - 0099-2240 VL - 78 IS - 20 SP - 7398 EP - 7406 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Penone, Caterina A1 - Allan, Eric A1 - Soliveres, Santiago A1 - Felipe-Lucia, Maria R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Simons, Nadja K. A1 - Schall, Peter A1 - van der Plas, Fons A1 - Manning, Peter A1 - Manzanedo, Ruben D. A1 - Boch, Steffen A1 - Prati, Daniel A1 - Ammer, Christian A1 - Bauhus, Juergen A1 - Buscot, Francois A1 - Ehbrecht, Martin A1 - Goldmann, Kezia A1 - Jung, Kirsten A1 - Mueller, Joerg A1 - Mueller, Joerg C. A1 - Pena, Rodica A1 - Polle, Andrea A1 - Renner, Swen C. A1 - Ruess, Liliane A1 - Schoenig, Ingo A1 - Schrumpf, Marion A1 - Solly, Emily F. A1 - Tschapka, Marco A1 - Weisser, Wolfgang W. A1 - Wubet, Tesfaye A1 - Fischer, Markus T1 - Specialisation and diversity of multiple trophic groups are promoted by different forest features JF - Ecology letters N2 - While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation. KW - biodiversity exploratories KW - dark diversity KW - forest management KW - global change KW - land-use KW - multidiversity KW - specialisation KW - temperate forests Y1 - 2018 U6 - https://doi.org/10.1111/ele.13182 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 1 SP - 170 EP - 180 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schall, Peter A1 - Gossner, Martin M. A1 - Heinrichs, Steffi A1 - Fischer, Markus A1 - Boch, Steffen A1 - Prati, Daniel A1 - Jung, Kirsten A1 - Baumgartner, Vanessa A1 - Blaser, Stefan A1 - Böhm, Stefan A1 - Buscot, Francois A1 - Daniel, Rolf A1 - Goldmann, Kezia A1 - Kaiser, Kristin A1 - Kahl, Tiemo A1 - Lange, Markus A1 - Müller, Jörg Hans A1 - Overmann, Jörg A1 - Renner, Swen C. A1 - Schulze, Ernst-Detlef A1 - Sikorski, Johannes A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Weisser, Wolfgang W. A1 - Wemheuer, Bernd A1 - Wubet, Tesfaye A1 - Ammer, Christian T1 - The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - 1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity. KW - beta diversity KW - forest specialists KW - gamma diversity KW - heterogeneity KW - Hill numbers KW - saproxylic beetles KW - spatial grain KW - species accumulation curve KW - species richness KW - species turnover Y1 - 2017 U6 - https://doi.org/10.1111/1365-2664.12950 SN - 0021-8901 SN - 1365-2664 VL - 55 IS - 1 SP - 267 EP - 278 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Scherber, Christoph A1 - Eisenhauer, Nico A1 - Weisser, Wolfgang W. A1 - Schmid, Bernhard A1 - Voigt, Winfried A1 - Fischer, Markus A1 - Schukze, Ernst-Detlef A1 - Roscher, Christiane A1 - Weigelt, Alexandra A1 - Allan, Eric A1 - Beßler, Holger A1 - Bonkowski, Michael A1 - Buchmann, Nina A1 - Buscot, François A1 - Clement, Lars W. A1 - Ebeling, Anne A1 - Engels, Christof A1 - Halle, Stefan A1 - Kertscher, Ilona A1 - Klein, Alexandra Maria A1 - Koller, Robert A1 - König, Stephan A1 - Kowalski, Esther A1 - Kummer, Volker A1 - Kuu, Annely A1 - Lange, Markus A1 - Lauterbach, Dirk T1 - Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment Y1 - 2010 UR - http://www.nature.com/nature/journal/v468/n7323/full/nature09492.html SN - 0028-0836 ER - TY - JOUR A1 - Simons, Nadja K. A1 - Gossner, Martin M. A1 - Lewinsohn, Thomas M. A1 - Boch, Steffen A1 - Lange, Markus A1 - Müller, Jörg A1 - Pasalic, Esther A1 - Socher, Stephanie A. A1 - Türke, Manfred A1 - Fischer, Markus A1 - Weisser, Wolfgang W. T1 - Resource-mediated indirect effects of grassland management on arthropod diversity JF - PLoS one N2 - Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0107033 SN - 1932-6203 VL - 9 IS - 9 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Simons, Nadja K. A1 - Lewinsohn, Thomas A1 - Bluethgen, Nico A1 - Buscot, Francois A1 - Boch, Steffen A1 - Daniel, Rolf A1 - Gossner, Martin M. A1 - Jung, Kirsten A1 - Kaiser, Kristin A1 - Müller, Jörg A1 - Prati, Daniel A1 - Renner, Swen C. A1 - Socher, Stephanie A. A1 - Sonnemann, Ilja A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Weisser, Wolfgang W. T1 - Contrasting effects of grassland management modes on species-abundance distributions of multiple groups JF - Agriculture, ecosystems & environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere N2 - Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure. KW - Biodiversity KW - Cutting frequency KW - Management intensity KW - Rank-abundance KW - Species loss KW - Rarity Y1 - 2017 U6 - https://doi.org/10.1016/j.agee.2016.12.022 SN - 0167-8809 SN - 1873-2305 VL - 237 SP - 143 EP - 153 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Socher, Stephanie A. A1 - Prati, Daniel A1 - Boch, Steffen A1 - Müller, Jörg A1 - Baumbach, Henryk A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Schöning, Ingo A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The relationship of different types of grassland use with plant species richness and composition ( functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (-15% plant species richness, -0.1 Shannon diversity on fertilized grasslands plots of 16m(2)) and changed composition (-3% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27%), and the cattle grazed ones lower (-42%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots KW - Biodiversity exploratories KW - Functional groups KW - Land use type KW - Livestock type KW - Shannon diversity Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2012.12.003 SN - 1439-1791 VL - 14 IS - 2 SP - 126 EP - 136 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Soliveres, Santiago A1 - Maestre, Fernando T. A1 - Ulrich, Werner A1 - Manning, Peter A1 - Boch, Steffen A1 - Bowker, Matthew A. A1 - Prati, Daniel A1 - Delgado-Baquerizo, Manuel A1 - Quero, Jose L. A1 - Schöning, Ingo A1 - Gallardo, Antonio A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Garcia-Gomez, Miguel A1 - Ochoa, Victoria A1 - Schulze, Ernst-Detlef A1 - Fischer, Markus A1 - Allan, Eric T1 - Intransitive competition is widespread in plant communities and maintains their species richness JF - Ecology letters N2 - Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. KW - Aridity KW - biodiversity KW - coexistence KW - drylands KW - land use KW - mesic grasslands KW - rock-paper-scissors game Y1 - 2015 U6 - https://doi.org/10.1111/ele.12456 SN - 1461-023X SN - 1461-0248 VL - 18 IS - 8 SP - 790 EP - 798 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Soliveres, Santiago A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Boehm, Stefan A1 - Boerschig, Carmen A1 - Buscot, Francois A1 - Diekoetter, Tim A1 - Heinze, Johannes A1 - Hoelzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Mueller, Joerg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schoening, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Tuerke, Manfred A1 - Venter, Paul A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Locally rare species influence grassland ecosystem multifunctionality JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. KW - biodiversity KW - common species KW - ecosystem function KW - identity hypothesis KW - land use KW - multitrophic Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0269 SN - 0962-8436 SN - 1471-2970 VL - 371 SP - 3175 EP - 3185 PB - Royal Society CY - London ER - TY - JOUR A1 - Soliveres, Santiago A1 - van der Plas, Fons A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Renner, Swen C. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Heinze, Johannes A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Venter, Paul C. A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality JF - Nature : the international weekly journal of science Y1 - 2016 U6 - https://doi.org/10.1038/nature19092 SN - 0028-0836 SN - 1476-4687 VL - 536 SP - 456 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Stein, Claudia A1 - Unsicker, Sybille B. A1 - Kahmen, Ansgar A1 - Wagner, Markus A1 - Audorff, Volker A1 - Auge, Harald A1 - Prati, Daniel A1 - Weisser, Wolfgang W. T1 - Impact of invertebrate herbivory in grasslands depends on plant species diversity N2 - Invertebrate herbivores are ubiquitous in most terrestrial ecosystems, and theory predicts that their impact on plant community biomass should depend on diversity and productivity of the associated plant communities. To elucidate general patterns in the relationship between invertebrate herbivory, plant diversity, and productivity, we carried out a long-term herbivore exclusion experiment at multiple grassland sites in a mountainous landscape of central Germany. Over a period of five years, we used above-and belowground insecticides as well as a molluscicide to manipulate invertebrate herbivory at 14 grassland sites, covering a wide range of plant species diversity (13-38 species/m(2)) and aboveground plant productivity (272-1125 g.m(-2).yr(-1)), where plant species richness and productivity of the sites were not significantly correlated. Herbivore exclusion had significant effects on the plant communities: it decreased plant species richness and evenness, and it altered plant community composition. In particular, exclusion of belowground herbivores promoted grasses at the expense of herbs. In contrast to our expectation, herbivore effects on plant community biomass were not influenced by productivity. However, effect size of invertebrate herbivores was negatively correlated with plant diversity of the grasslands: the effect of herbivory on biomass tended to be negative at sites of high diversity and positive at sites of low diversity. In general, the effects of aboveground herbivores were relatively small as compared to belowground herbivores, which were important drivers of plant community composition. Our study is the first to show that variation in the effects of invertebrate herbivory on plant communities across a landscape is significantly influenced by plant species richness. Y1 - 2010 UR - http://esapubs.org/esapubs/journals/ecology.htm U6 - https://doi.org/10.1890/09-0600.1 SN - 0012-9658 ER - TY - JOUR A1 - Türke, Manfred A1 - Andreas, Kerstin A1 - Gossner, Martin M. A1 - Kowalski, Esther A1 - Lange, Markus A1 - Boch, Steffen A1 - Socher, Stephanie A. A1 - Müller, Jörg A1 - Prati, Daniel A1 - Fischer, Markus A1 - Meyhöfer, Rainer A1 - Weisser, Wolfgang W. T1 - Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs? JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon. KW - myrmecochory KW - gastropodochory KW - Arion KW - slug KW - seed dispersal Y1 - 2012 U6 - https://doi.org/10.1086/663195 SN - 0003-0147 VL - 179 IS - 1 SP - 124 EP - 131 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Wiesner, Kerstin R. A1 - Loxdale, Hugh D. A1 - Köhler, Günter A1 - Schneider, Anja R. R. A1 - Tiedemann, Ralph A1 - Weisser, Wolfgang W. T1 - Patterns of local and regional genetic structuring in the meadow grasshopper, Chorthippus parallelus (Orthoptera: Acrididae), in Central Germany revealed using microsatellite markers JF - Biological journal of the Linnean Society : a journal of evolution N2 - The meadow grasshopper, Chorthippus parallelus (Zetterstedt), is common and widespread in Central Europe, with a low dispersal range per generation. A population study in Central Germany (Frankenwald and Thuringer Schiefergebirge) showed strong interpopulation differences in abundance and individual fitness. We examined genetic variability using microsatellite markers within and between 22 populations in a short-to long-distance sampling (19 populations, Frankenwald, Schiefergebirge, as well as a southern transect), and in the Erzgebirge region (three populations), with the latter aiming to check for effects as a result of historical forest cover. Of the 671 C. parallelus captured, none was macropterous (functionally winged). All populations showed a high level of expected and observed heterozygosity (mean 0.80-0.90 and 0.60-0.75, respectively), whereas there was evidence of inbreeding (F(IS) values all positive). Allelic richness for all locus-population combinations was high (mean 9.3-11.2), whereas alleles per locus ranged from 15-62. At a local level, genic and genotypic differences were significant. Pairwise F(ST) values were in the range 0.00-0.04, indicating little interpopulation genetic differentiation. Similarly, the calculated gene flow was very high, based on the respective F(ST) (19.5) and using private alleles (7.7). A Neighbour-joining tree using Nei's D(A) and principal coordinate analysis separated two populations that were collected in the Erzgebirge region. Populations from this region may have escaped the effects of the historical forest cover. The visualization of the spatial arrangement of genotypes revealed one geographical barrier to gene flow in the short-distance sampling. KW - adaptation KW - gene flow KW - diversity KW - landscape structure KW - wing polyphenism Y1 - 2011 U6 - https://doi.org/10.1111/j.1095-8312.2011.01698.x SN - 0024-4066 VL - 103 IS - 4 SP - 875 EP - 890 PB - Wiley-Blackwell CY - Malden ER -