TY - JOUR A1 - Dreyer, Ingo A1 - Poree, Fabien A1 - Schneider, A. A1 - Mittelstadt, J. A1 - Bertl, Adam A1 - Sentenac, H. A1 - Thibaud, Jean-Baptiste A1 - Müller-Röber, Bernd T1 - Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit N2 - SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K+ channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K-out channels. Deletion mutants and chimeric proteins generated from SKOR and the K-in channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains thatchannel a-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K-T domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K-out alpha-subunits did not assemble with K-in alpha-subunits because of the absence of interaction between their assembly sites Y1 - 2004 SN - 0006-3495 ER - TY - JOUR A1 - Gajdanowicz, Pawel A1 - Michard, Erwan A1 - Sandmann, Michael A1 - Rocha, Marcio A1 - Correa, Luiz Gustavo Guedes A1 - Ramirez-Aguilar, Santiago J. A1 - Gomez-Porras, Judith L. A1 - Gonzalez, Wendy A1 - Thibaud, Jean-Baptiste A1 - van Dongen, Joost T. A1 - Dreyer, Ingo T1 - Potassium (K plus ) gradients serve as a mobile energy source in plant vascular tissues JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The essential mineral nutrient potassium (K(+)) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K(+) contributes to plant productivity. K(+) is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K(+) also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K(+) in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K(+) circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K(+) channel AKT2 taps this "potassium battery," which then efficiently assists the plasma membrane H(+)-ATPase in energizing the transmembrane phloem (re) loading processes. KW - channel gating KW - energy limiting condition KW - phloem reloading KW - posttranslational regulation KW - potassium channel Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1009777108 SN - 0027-8424 VL - 108 IS - 2 SP - 864 EP - 869 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Held, Katrin A1 - Pascaud, Francois A1 - Eckert, Christian A1 - Gajdanowicz, Pawel A1 - Hashimoto, Kenji A1 - Corratge-Faillie, Claire A1 - Offenborn, Jan Niklas A1 - Lacombe, Benoit A1 - Dreyer, Ingo A1 - Thibaud, Jean-Baptiste A1 - Kudla, Jörg T1 - Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex JF - Cell research N2 - Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM. KW - calcium sensor KW - protein kinase KW - potassium channel KW - signal transduction Y1 - 2011 U6 - https://doi.org/10.1038/cr.2011.50 SN - 1001-0602 VL - 21 IS - 7 SP - 1116 EP - 1130 PB - Nature Publ. Group CY - Shanghai ER - TY - JOUR A1 - Johansson, Ingela A1 - Wulfetange, Klaas A1 - Poree, Fabien A1 - Michard, Erwan A1 - Gajdanowicz, Pawel A1 - Lacombe, Benoit A1 - Sentenac, Herve A1 - Thibaud, Jean-Baptiste A1 - Müller-Röber, Bernd A1 - Blatt, Michael R. A1 - Dreyer, Ingo T1 - External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism N2 - Plant outward-rectifying K+ channels mediate K+ efflux from guard cells during stomatal closure and from root cells into the xylem for root-shoot allocation of potassium (K). Intriguingly, the gating of these channels depends on the extracellular K+ concentration, although the ions carrying the current are derived from inside the cell. This K+ dependence confers a sensitivity to the extracellular K+ concentration ([K+]) that ensures that the channels mediate K+ efflux only, regardless of the [K+] prevailing outside. We investigated the mechanism of K+-dependent gating of the K+ channel SKOR of Arabidopsis by site-directed mutagenesis. Mutations affecting the intrinsic K+ dependence of gating were found to cluster in the pore and within the sixth transmembrane helix (S6), identifying an 'S6 gating domain' deep within the membrane. Mapping the SKOR sequence to the crystal structure of the voltage-dependent K+ channel KvAP from Aeropyrum pernix suggested interaction between the S6 gating domain and the base of the pore helix, a prediction supported by mutations at this site. These results offer a unique insight into the molecular basis for a physiologically important K+-sensory process in plants Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0960-7412 U6 - https://doi.org/10.1111/j.1365-313X.2006.02690.X SN - 0960-7412 ER - TY - JOUR A1 - Michard, Erwan A1 - Lacombe, Benoît A1 - Poree, Fabien A1 - Müller-Röber, Bernd A1 - Sentenac, Hervé A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation N2 - Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K-weak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of + 100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K-weak gating. Instead, a lysine residue in S4, highly conserved among all K-weak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward- rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K-in channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is similar to 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it Y1 - 2005 ER - TY - JOUR A1 - Poree, Fabien A1 - Wulfetange, K. A1 - Naso, A. A1 - Carpaneto, Armando A1 - Roller, A. A1 - Natura, G. A1 - Bertl, Adam A1 - Sentenac, H. A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - Plant K-in and K-out channels : Approaching the trait of opposite rectification by analyzing more than 250 KAT1- SKOR chimeras N2 - Members of the Shaker-like plant K+ channel family share a common structure, but are highly diverse in their function: they behave as either hyperpolarization-activated inward-rectifying (K-in) channels, or leak-like (K-weak) channels, or depolarization-activated outward-rectifying (K-out) channels. Here we created 256 chimeras between the K-in channel KAT1 and the K-out channel SKOR. The chimeras were screened in a potassium-uptake deficient yeast strain to identify those, which mediate potassium inward currents, i.e., which are functionally equivalent to KAT1. This strategy allowed Lis to identify three chimeras which differ from KAT1 in three parts of the polypeptide: the cytosolic N- terminus, the cytosolic C-terminus, and the putative voltage-sensor S4. Additionally, mutations in the K-out Channel SKOR were generated in order to localize molecular entities underlying its depolarization activation. The triple mutant SKOR-D312N-M313L-1314G, carrying amino-acid changes in the S6 segment, was identified as a channel which did not display any rectification in the tested voltage-range. (C) 2005 Elsevier Inc. All rights reserved Y1 - 2005 SN - 0006-291X ER -