TY - JOUR A1 - Zhang, Chengjun A1 - Zhang, Wanyi A1 - Feng, Zhaodong A1 - Mischke, Steffen A1 - Gao, Xiang A1 - Gao, Dou A1 - Sun, Feifei T1 - Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - A multi-proxy study including analyses of delta C-13(org) for the lake sediment core GN-02 and grain size, TOC. CaCO3 content, delta C-13(carb) and delta O-18(carb) of bulk carbonate, and the mineralogy of the parallel core GN-04 from Gun Nuur was performed to reconstruct the Holocene hydrology and climate on the northern Mongolian Plateau. The chronology was established using 40 C-14 dates of bulk organic matter in addition to nine previously published radiocarbon dates for core GN-02, and further five C-14 dates for the new core GN-04. A lake reservoir effect of 1060 C-14 years was determined as the intercept of the high-resolution GN-02 age-depth model at the modern sediment surface. The size of the reservoir effect is supported by the age of the core-top sample (1200 +/- 40 C-14 years) and the determined difference between a wood-derived radiocarbon age from the GN-02 core base and the age-model inferred age for bulk organic matter at the same stratigraphic level (1000 C-14 years). Low lake level and prevailing aeolian sediment deposition at Gun Nuur under dry conditions were recorded during the earliest Holocene (> 10,800-10,300 cal a BP). Gun Nuur expanded under significantly wetter conditions between 10,300 and 7000 cal a BP. Unstable climate conditions existed in the mid Holocene (7000-2500 cal a BP) and three periods of low lake-levels and significantly drier conditions were recorded between 7000-5700, 4100-3600 and 3000-2500 cal a BP. Intermediate lake levels were inferred for the intervening periods. Around 2500 cal a BP, the climate change and wetter conditions were established again. As a consequence, the lake level of Gun Nuur rose again due to higher effective moisture and the relatively wet present conditions were achieved ca. 1600 cal a BP. Our results suggest that the initial Holocene climate change on the northern Mongolian Plateau was not accompanied by a rapid increase in precipitation as on the Tibetan Plateau. The establishment of wetter conditions in northern Mongolia lagged behind the early Holocene moisture increase on the Tibetan Plateau by ca. 1000 years. Subsiding dry air in the north of the Tibetan Plateau resulted from the strengthened summer monsoon on the Tibetan Plateau during the period of maximum summer insolation and probably inhibited a significant precipitation increase in Mongolia. The significant moisture increase in the Gun Nuur region at ca. 10.3 cal ka BP is probably not related to the northward shift of the present summer monsoon boundary or the moisture delivery from the northern Atlantic through the westerlies. Instead, water from melting snow, ice and frozen ground and the generation of precipitation from the local recycling of moisture are discussed as possible moisture source for the early onset of wetter conditions on the Mongolian Plateau. KW - Multi-proxy record KW - Sediment geochemistry KW - Mineralogy KW - Paleohydrology KW - Holocene KW - Mongolia Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.01.032 SN - 0031-0182 VL - 323 IS - 6 SP - 75 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Wanyi A1 - Mischke, Steffen A1 - Zhang, Chengjun A1 - Gao, Dou A1 - Fan, Rong T1 - Ostracod distribution and habitat relationships in the Kunlun Mountains, northern Tibetan Plateau JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - Surface sediment samples were collected from the lakes Heihai, Kusai, Haiding Nuur and Yan Hu, and from streams and ponds in the Kunlun Mountains at the northern margin of the Tibetan Plateau to investigate the sub-fossil ostracod (micro-crustacean) fauna of the region. Among 65 collected samples, 46 ostracod shell-rich samples were used to study the relationship between the ostracod distribution and specific conductivity (SC) of the water, which ranged from 0.6 to 53.0 mS cm(-1). A total of eleven ostracod species was identified from this region, with about half of the species restricted to the Tibetan Plateau and its adjacent mountain areas, and the other half representing Holarctic taxa. Tonnacypris cf. estonica and Tonnacypris tonnensis are reported from the Tibetan Plateau for the first time. Leucocythere sp. is the dominant species and Ilyocypris cf. bradyi is also relatively abundant. The other seven species were recorded with limited abundances apparently due to lower SC tolerances. Leucocythere sp. was recorded over the full SC range from 0.6 to 53 mS cm(-1). Eucypris mareotica is a typical brackish and saline water species, which was found at sample sites with high SC (2.8-53.0 mS cm(-1)). In contrast, Leucocythere dorsotuberosa, Candona candida and Eucypris afghanistanensis prefer freshwater to slightly oli-gohaline waters with SC < 1.8 mS cm(-1). The SC optimum and tolerance range for each species were determined and compared to earlier reported data from other regions of Central Asia. The results indicate that species assemblage data from fossil ostracod shells have a large potential to provide information on past SC levels and more general climate-determined moisture conditions. (C) 2013 Elsevier Ltd and INQUA. All rights reserved. Y1 - 2013 U6 - https://doi.org/10.1016/j.quaint.2013.06.020 SN - 1040-6182 VL - 313 SP - 38 EP - 46 PB - Elsevier CY - Oxford ER -