TY - JOUR A1 - Bernhard, Nadine A1 - Moskwa, Lisa-Marie A1 - Schmidt, Karsten A1 - Oeser, Ralf Andreas A1 - Aburto, Felipe A1 - Bader, Maaike Y. A1 - Baumann, Karen A1 - von Blanckenburg, Friedhelm A1 - Boy, Jens A1 - van den Brink, Liesbeth A1 - Brucker, Emanuel A1 - Buedel, Burkhard A1 - Canessa, Rafaella A1 - Dippold, Michaela A. A1 - Ehlers, Todd A1 - Fuentes, Juan P. A1 - Godoy, Roberto A1 - Jung, Patrick A1 - Karsten, Ulf A1 - Koester, Moritz A1 - Kuzyakov, Yakov A1 - Leinweber, Peter A1 - Neidhardt, Harald A1 - Matus, Francisco A1 - Mueller, Carsten W. A1 - Oelmann, Yvonne A1 - Oses, Romulo A1 - Osses, Pablo A1 - Paulino, Leandro A1 - Samolov, Elena A1 - Schaller, Mirjam A1 - Schmid, Manuel A1 - Spielvogel, Sandra A1 - Spohn, Marie A1 - Stock, Svenja A1 - Stroncik, Nicole A1 - Tielboerger, Katja A1 - Uebernickel, Kirstin A1 - Scholten, Thomas A1 - Seguel, Oscar A1 - Wagner, Dirk A1 - Kühn, Peter T1 - Pedogenic and microbial interrelations to regional climate and local topography BT - New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - The effects of climate and topography on soil physico-chemical and microbial parameters were studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26 degrees-38 degrees S). The study sites encompass arid (Pan de Azucar), semiarid (Santa Gracia), mediterranean (La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-mixed forest, where biocrusts only occur as an early pioneering development stage after disturbance. All soils originate from granitic parent materials and show very strong differences in pedogenesis intensity and soil depth. Most of the investigated physical, chemical and microbiological soil properties showed distinct trends along the climate gradient. Further, abrupt changes between the arid northernmost study site and the other semi-arid to humid sites can be shown, which indicate non-linearity and thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH values and base saturation (BS) decreased. These properties demonstrate the accumulation of organic matter, clay formation and element leaching as key-pedogenic processes with increasing humidity. However, the soils in the northern arid climate do not follow this overall latitudinal trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites the local variability exceeds the variability along the climate gradient. Differences in soil properties between topographic positions were most pronounced at the study sites with the mediterranean and humid climate, whereas microbial abundances were independent on topography across all study sites. In general, the regional climate is the strongest controlling factor for pedogenesis and microbial parameters in soils developed from the same parent material. Topographic position along individual slopes of limited length augmented this effect only under humid conditions, where water erosion likely relocated particles and elements downward. The change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear relationships of pedogenic and microbial processes in soils depending on climate with a sharp threshold between arid and semi-arid conditions. Therefore, the soils on the transition between arid and semi-arid conditions are especially sensitive and may be well used as indicators of long and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor - climate - on pedogenic processes. KW - Climate KW - Topography KW - Soil texture KW - Total organic carbon KW - Carbon isotope ratio (delta C-13(TOC)) KW - Microbial abundance Y1 - 2018 U6 - https://doi.org/10.1016/j.catena.2018.06.018 SN - 0341-8162 SN - 1872-6887 VL - 170 SP - 335 EP - 355 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Meier, Lars A. A1 - Krauze, Patryk A1 - Prater, Isabel A1 - Horn, Fabian A1 - Schaefer, Carlos Ernesto Reynaud A1 - Scholten, Thomas A1 - Wagner, Dirk A1 - Müller, Carsten Werner A1 - Kühn, Peter T1 - Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region JF - Biogeosciences N2 - James Ross Island (JRI) offers the exceptional opportunity to study microbial-driven pedogenesis without the influence of vascular plants or faunal activities (e.g., penguin rookeries). In this study, two soil profiles from JRI (one at Santa Martha Cove - SMC, and another at Brandy Bay BB) were investigated, in order to gain information about the initial state of soil formation and its interplay with prokaryotic activity, by combining pedological, geochemical and microbiological methods. The soil profiles are similar with respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent windward and leeward locations towards the mainly southwesterly winds. These different positions result in differences in electric conductivity of the soils caused by additional input of bases by sea spray at the windward site and opposing trends in the depth functions of soil pH and electric conductivity. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes and Chloroflexi. A shift in the dominant taxa was observed below 20 cm in both soils as well as an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidiferrobacteraceae. This shift is coupled by a change in microstructure. While single/pellicular grain microstructure (SMC) and platy microstructure (BB) are dominant above 20 cm, lenticular microstructure is dominant below 20 cm in both soils. The change in microstructure is caused by frequent freeze-thaw cycles and a relative high water content, and it goes along with a development of the pore spacing and is accompanied by a change in nutrient content. Multivariate statistics revealed the influence of soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution and pedogenic oxide ratios on the overall microbial community structure and explained 49.9% of its variation. The correlation of the pedogenic oxide ratios with the compositional distribution of microorganisms as well as the relative abundance certain microorganisms such as potentially chemolithotrophic Acidiferrobacteraceae-related OTUs could hint at an interplay between soil-forming processes and microorganisms. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-2481-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 12 SP - 2481 EP - 2499 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Oeser, Ralf Andreas A1 - Stroncik, Nicole A1 - Moskwa, Lisa-Marie A1 - Bernhard, Nadine A1 - Schaller, Mirjam A1 - Canessa, Rafaella A1 - van den Brink, Liesbeth A1 - Köster, Moritz A1 - Brucker, Emanuel A1 - Stock, Svenja A1 - Pablo Fuentes, Juan A1 - Godoy, Roberto A1 - Javier Matus, Francisco A1 - Oses Pedraza, Romulo A1 - Osses McIntyre, Pablo A1 - Paulino, Leandro A1 - Seguel, Oscar A1 - Bader, Maaike Y. A1 - Boy, Jens A1 - Dippold, Michaela A. A1 - Ehlers, Todd A1 - Kühn, Peter A1 - Kuzyakov, Yakov A1 - Leinweber, Peter A1 - Scholten, Thomas A1 - Spielvogel, Sandra A1 - Spohn, Marie A1 - Ubernickel, Kirstin A1 - Tielbörger, Katja A1 - Wagner, Dirk A1 - von Blanckenburg, Friedhelm T1 - Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - From north to south, denudation rates from cosmogenic nuclides are similar to 10 t km(-2) yr(-1) at the arid Pan de Aziicar site, similar to 20 t km(2) yr(-1) at the semi-arid site of Santa Gracia, -60 t km(-2) yr(-1) at the Mediterranean climate site of La Campana, and similar to 30 t km(-2) yr(-1) at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (similar to 26 degrees S) to south (similar to 38 degrees S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies. KW - Weathering KW - Denudation KW - Microbial abundance KW - Climate KW - Chile Y1 - 2018 U6 - https://doi.org/10.1016/j.catena.2018.06.002 SN - 0341-8162 SN - 1872-6887 VL - 170 SP - 183 EP - 203 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rodriguez, Victoria A1 - Moskwa, Lisa-Marie A1 - Oses, Romulo A1 - Kühn, Peter A1 - Riveras-Muñoz, Nicolás A1 - Seguel, Oscar A1 - Scholten, Thomas A1 - Wagner, Dirk T1 - Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the chilean coastal cordillera JF - Microorganisms N2 - Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes. KW - bacterial-community structure KW - bacterial diversity KW - climate gradient KW - slope aspect KW - Chilean Coastal Cordillera KW - soil formation Y1 - 2022 U6 - https://doi.org/10.3390/microorganisms10050847 SN - 2076-2607 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Spinola, Diogo Noses A1 - Pi-Puig, Teresa A1 - Solleiro-Rebolledo, Elizabeth A1 - Egli, Markus A1 - Sudo, Masafumi A1 - Sedov, Sergey A1 - Kühn, Peter T1 - Origin of clay minerals in Early Eocene volcanic paleosols on King George Island, Maritime Antarctica JF - Scientific reports N2 - The paleoclimate during the Early Eocene in Maritime Antarctica is characterized by cool conditions without a pronounced dry season. Soils formed on volcanic material under such climate conditions in modern analogue environments are usually Andosols rich in nanocrystalline minerals without pedogenic smectite. The paleosols formed on volcanic material on King Georges Island are covered by basalts, dated by 6 new 40Ar/39Ar datings to 51-48 Ma, and are rich in smectite. A pedogenic origin of the smectites would suggest a semi-arid rather than a wet non-seasonal humid paleoclimate. To investigate the origin of the smectites in these paleosols we used X-ray diffraction and microscopic techniques. Minor mineralogical changes between the volcanic parent material and the paleosols and a homogenous distribution of smectites throughout the paleosol horizons indicate that these smectites were mainly inherited from the pyroclastic parent material, which was altered prior to surficial weathering. Nevertheless, the mineralogical properties, such as degree of crystallinity and octahedral site occupancy, of these smectites were modified during the ancient soil formation. Our findings highlight that trioctahedral smectites were a product of deuteric alteration of pyroclastic rocks and were progressively transformed to dioctahedral smectites during weathering in a soil environment on King George Island. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-06617-x SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER -