TY - JOUR A1 - Palkopoulou, Eleftheria A1 - Lipson, Mark A1 - Mallick, Swapan A1 - Nielsen, Svend A1 - Rohland, Nadin A1 - Baleka, Sina Isabelle A1 - Karpinski, Emil A1 - Ivancevici, Atma M. A1 - Thu-Hien To, A1 - Kortschak, Daniel A1 - Raison, Joy M. A1 - Qu, Zhipeng A1 - Chin, Tat-Jun A1 - Alt, Kurt W. A1 - Claesson, Stefan A1 - Dalen, Love A1 - MacPhee, Ross D. E. A1 - Meller, Harald A1 - Rocar, Alfred L. A1 - Ryder, Oliver A. A1 - Heiman, David A1 - Young, Sarah A1 - Breen, Matthew A1 - Williams, Christina A1 - Aken, Bronwen L. A1 - Ruffier, Magali A1 - Karlsson, Elinor A1 - Johnson, Jeremy A1 - Di Palma, Federica A1 - Alfoldi, Jessica A1 - Adelsoni, David L. A1 - Mailund, Thomas A1 - Munch, Kasper A1 - Lindblad-Toh, Kerstin A1 - Hofreiter, Michael A1 - Poinar, Hendrik A1 - Reich, David T1 - A comprehensive genomic history of extinct and living elephants JF - Proceedings of the National Academy of Sciences of the United States of America KW - paleogenomics KW - elephantid evolution KW - mammoth KW - admixture KW - species divergence Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1720554115 SN - 0027-8424 VL - 115 IS - 11 SP - E2566 EP - E2574 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Meyer, Matthias A1 - Palkopoulou, Eleftheria A1 - Baleka, Sina Isabelle A1 - Stiller, Mathias A1 - Penkman, Kirsty E. H. A1 - Alt, Kurt W. A1 - Ishida, Yasuko A1 - Mania, Dietrich A1 - Mallick, Swapan A1 - Meijer, Tom A1 - Meller, Harald A1 - Nagel, Sarah A1 - Nickel, Birgit A1 - Ostritz, Sven A1 - Rohland, Nadin A1 - Schauer, Karol A1 - Schueler, Tim A1 - Roca, Alfred L. A1 - Reich, David A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution JF - eLife N2 - The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods similar to 120 and similar to 244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision. Y1 - 2017 U6 - https://doi.org/10.7554/eLife.25413 SN - 2050-084X VL - 6 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barnett, Ross A1 - Gilbert, M. Thomas P. A1 - Zepeda-Mendoza, M. Lisandra A1 - Reumer, Jelle W. F. A1 - de Vos, John A1 - Zazula, Grant A1 - Nagel, Doris A1 - Baryshnikov, Gennady F. A1 - Leonard, Jennifer A. A1 - Rohland, Nadin A1 - Westbury, Michael V. A1 - Barlow, Axel A1 - Hofreiter, Michael T1 - Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics JF - Current biology N2 - Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Y1 - 2017 U6 - https://doi.org/10.1016/j.cub.2017.09.033 SN - 0960-9822 SN - 1879-0445 VL - 27 SP - 3330 EP - + PB - Cell Press CY - Cambridge ER -