TY - JOUR A1 - Mortimer, Estelle A1 - Kirstein, Linda A. A1 - Stuart, Finlay M. A1 - Strecker, Manfred T1 - Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System JF - Earth & planetary science letters N2 - The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes. lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations. (C) 2016 Elsevier B.V. All rights reserved. KW - apatite helium thermochronology KW - normal-fault evolution KW - fault linkage KW - East African Rift System Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.08.040 SN - 0012-821X SN - 1385-013X VL - 455 SP - 62 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Carrapa, Barbara A1 - Bywater-Reyes, Sharon A1 - DeCelles, Peter G. A1 - Mortimer, Estelle A1 - Gehrels, George E. T1 - Late Eocene-Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25 degrees-26 degrees S) regional implications for Andean orogenic wedge development JF - Basin research N2 - Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U-Pb geochronological data from EocenePliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (PucaraAngastaco and La Vina areas) provide an Eocene (ca.similar to 38 similar to Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca.similar to 14 similar to Ma and the coarse-grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge-top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial-lacustrine intramontane setting. By ca.similar to 4 similar to Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge-top depozone, influenced by thick-skinned deformation and re-activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre-Eocene strata (Santa Barbara Subgroup) within the region. Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2117.2011.00519.x SN - 0950-091X VL - 24 IS - 3 SP - 249 EP - 268 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Strecker, Manfred A1 - Alonso, Ricardo N. A1 - Bookhagen, Bodo A1 - Carrapa, Barbara A1 - Coutand, Isabelle A1 - Hain, Mathis P. A1 - Hilley, George E. A1 - Mortimer, Estelle A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward R. T1 - Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes? N2 - Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and filling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We find that the timing of basin filling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin. Y1 - 2009 UR - http://geology.gsapubs.org/ U6 - https://doi.org/10.1130/G25545a.1 SN - 0091-7613 ER - TY - JOUR A1 - Mortimer, Estelle A1 - Gupta, Sanjeev A1 - Cowie, Patience T1 - Clinoform nucleation and growth in coarse-grained deltas, Loreto basin, Baja California Sur, Mexico : a response to episodic accelerations in fault displacement N2 - We investigate the controls on the architecture of coarse-grained delta progradational units (PUs) in the Pliocene Loreto basin (Baja California Sur, Mexico), a half-graben located on the western margin of the Gulf of California. Dorsey et al. (1997b) argued that delta progradation and transgression cycles in the basin were driven by episodic fault-controlled subsidence along the basin-bounding Loreto fault. Here we test this hypothesis by a detailed analysis of the sedimentary architecture of 11 exceptionally well-exposed, vertically arranged fluvio-deltaic PUs, each of which shows lateral facies transition from proximal alluvial facies palaeo-seaward into distal pro-delta facies. Of these 11 PUs, seven exhibit a lateral transition from a shoal water to Gilbert-delta facies associations as they are traced palaeo-seaward. This transition is characterised by down-transport development of foresets, which grow in height up to 35 m. Foreset units thicken in a basinward direction, with initially an oblique topset-foreset geometry that becomes increasingly sigmoidal. Each delta is capped by a shell bed that records drowning of the delta top. This systematic transition in delta architecture records increasing water depth through time during individual episodes of progradation. A mechanism that explains this transition is an accelerating rate of fault-controlled subsidence during each PU. During episodes of low slip rate, shoal-water deltas prograde across the submerged topography of the underlying delta unit. As displacement rate accelerates, increasing bathymetry at the delta front leads to steepening of foresets and initiation of Gilbert deltas. Subsequent delta drowning results from sediment starvation at the shoreline at high slip rates because of sediment trapping upstream. The observed delta architecture suggests that the long-term (> 100 kyr) history of slip on the Loreto fault was characterised by repetitive episodes of accelerating displacement accumulation. Such episodic fault behaviour is most likely to be because of variations in temporal and spatial strain partitioning between the Loreto fault and other faults in the Gulf of California. A physical explanation for the acceleration phenomenon involves evolving frictional properties on the episodically active Loreto fault Y1 - 2005 SN - 0950-091X ER - TY - JOUR A1 - Carrapa, Barbara A1 - Adelmann, Dirk A1 - Hilley, G. E. A1 - Mortimer, Estelle A1 - Sobel, Edward R. A1 - Strecker, Manfred T1 - Oligocene range uplift and development of plateau morphology in the southern central Andes N2 - [1] The Puna-Altiplano plateau in South America is a high-elevation, low internal relief landform that is characterized by internal drainage and hyperaridity. Thermochronologic and sedimentologic observations from the Sierra de Calalaste region in the southwestern Puna plateau, Argentina, place new constraints on early plateau evolution by resolving the timing of uplift of mountain ranges that bound present-day basins and the filling pattern of these basins during late Eocene-Miocene time. Paleocurrent indicators, sedimentary provenance analyses, and apatite fission track thermochronology indicate that the original paleodrainage setting was disrupted by exhumation and uplift of the Sierra de Calalaste range between 24 and 29 Ma. This event was responsible for basin reorganization and the disruption of the regional fluvial system that has ultimately led to the formation of internal drainage conditions, which, in the Salar de Antofalla, were established not later than late Miocene. Upper Eocene-Oligocene sedimentary rocks flanking the range contain features that suggest an arid environment existed prior to and during its uplift. Provenance data indicate a common similar source located to the west for both the southern Puna and the Altiplano of Bolivia during the late Eocene- Oligocene with sporadic local sources. This suggests the existence of an extensive, longitudinally oriented foreland basin along the central Andes during this time Y1 - 2005 ER -