TY - THES A1 - Fischer, Axel T1 - Investigating the impact of genomic compartments contributing to non-Mendelian inheritance based on high throughput sequencing data T1 - Untersuchungen zum Einfluss genomischer Kompartimente auf Nicht-Mendelsche Vererbung unter Nutzung von Hochdurchsatz-Sequenzierungsdaten N2 - More than a century ago the phenomenon of non-Mendelian inheritance (NMI), defined as any type of inheritance pattern in which traits do not segregate in accordance with Mendel’s laws, was first reported. In the plant kingdom three genomic compartments, the nucleus, chloroplast, and mitochondrion, can participate in such a phenomenon. High-throughput sequencing (HTS) proved to be a key technology to investigate NMI phenomena by assembling and/or resequencing entire genomes. However, generation, analysis and interpretation of such datasets remain challenging by the multi-layered biological complexity. To advance our knowledge in the field of NMI, I conducted three studies involving different HTS technologies and implemented two new algorithms to analyze them. In the first study I implemented a novel post-assembly pipeline, called Semi-Automated Graph-Based Assembly Curator (SAGBAC), which visualizes non-graph-based assemblies as graphs, identifies recombinogenic repeat pairs (RRPs), and reconstructs plant mitochondrial genomes (PMG) in a semiautomated workflow. We applied this pipeline to assemblies of three Oenothera species resulting in a spatially folded and circularized model. This model was confirmed by PCR and Southern blot analyses and was used to predict a defined set of 70 PMG isoforms. With Illumina Mate Pair and PacBio RSII data, the stoichiometry of the RRPs was determined quantitatively differing up to three-fold. In the second study I developed a post-multiple sequence alignment algorithm, called correlation mapping (CM), which correlates segment-wise numbers of nucleotide changes to a numeric ascertainable phenotype. We applied this algorithm to 14 wild type and 18 mutagenized plastome assemblies within the Oenothera genus and identified two genes, accD and ycf2 that may cause the competitive behavior of plastid genotypes as plastids can be biparental inherited in Oenothera. Moreover, lipid composition of the plastid envelope membrane is affected by polymorphisms within these two genes. For the third study, I programmed a pipeline to investigate a NMI phenomenon, known as paramutation, in tomato by analyzing DNA and bisulfite sequencing data as well as microarray data. We identified the responsible gene (Solyc02g0005200) and were able to fully repress its caused phenotype by heterologous complementation with a paramutation insensitive transgene of the Arabidopsis thaliana orthologue. Additionally, a suppressor mutant shows a globally altered DNA methylation pattern and carries a large deletion leading to a gene fusion involving a histone deacetylase. In conclusion, my developed and implemented algorithms and data analysis pipelines are suitable to investigate NMI and led to novel insights about such phenomena by reconstructing PMGs (SAGBAC) as a requirement to study mitochondria-associated phenotypes, by identifying genes (CM) causing interplastidial competition as well by applying a DNA/Bisulfite-seq analysis pipeline to shed light in a transgenerational epigenetic inheritance phenomenon. N2 - Vor mehr als einem Jahrhundert wurde über das Phänomen der Nicht-Mendelschen Vererbung (NMI), welche als jede Art von Vererbungsmuster definiert wird, in denen Eigenschaften nicht nach dem Mendelschen Gesetzen segregieren, zum ersten Mal berichtet. Im Pflanzenkönigreich können drei Zellkompartimente mit ihrem eigenen Erbgut, Nukleus, Chloroplast, und Mitochondrium, an einem solchen Phänomen beteiligt sein. Hochdurchsatz-Sequenzierungstechnologien (HTS) stellen nachweislich eine Schlüsseltechnologie dar, um NMI Phänomene durch die Assemblierung und/oder Resequenzierung von ganzen Genomen zu untersuchen. Jedoch bleibt die Generierung, Analyse sowie die Interpretation solcher Datensätze durch die vielschichtige biologische Komplexität weiterhin eine Herausforderung. Um unser Wissen über NMI zu erweitern habe ich drei Studien durchgeführt in denen unterschiedliche HTS Technologien involviert waren und zwei neue Algorithmen implementiert um sie zu analysieren. In der ersten Studie habe ich eine neue Postassemblierungspipeline mit dem Namen Semi-Automated Graph-Based Assembly Curator (SAGBAC) entwickelt, welche nicht Graphen-basierte Genomassemblierungen als Graphen visualisiert, rekombinierende Repeatpaare (RRP) identifiziert, und pflanzliche mitochondrielle Genome (PMG) in einem halb-automatisierten Prozess rekonstruiert. Wir haben diese Pipeline auf Assemblierungen von drei Oenothera Spezies angewandt, was in gefalteten zirkularisierten Modellen resultierte. Dieses Modell wurde durch PCR und Southern Blot Analysen bestätigt, sowie verwendet, um einen definierten Satz von 70 PMG Isoformen vorherzusagen. Mit Illumina Mate Pair und PacBio RSII Daten wurde die Stöchiometrie der RRPs quantitativ bestimmt, die sich bis zu dreifach unterscheiden. In der zweiten Studie habe ich einen post-Multiples Sequenzalignment Algorithmus mit dem Namen Correlation Mapping (CM) entwickelt, der eine segmentweise Anzahl von Nukleotidaustauschen mit numerisch erfassbaren Phänotypen korreliert. Wir haben diesen Algorithmus auf 14 Wildtypen und 18 mutagenisierte Plastomassemblierungen aus der Gattung Oenothera angewandt und konnten zwei Gene, accD und ycf2 identifizieren, welche für das kompetitive Verhalten von Plastid Genotypen verantwortlich ist. Weiterhin wird die Lipidkomposition der Plastid-Hüllmembranen durch Polymorphismen in den beiden Genen beeinflusst. Für die dritte Studie habe ich eine Pipeline programmiert, um ein NMI Phänomen, bekannt als Paramutation, in der Tomate mit Hilfe von DNA- und Bisulfitsequenzierungsdaten sowie Microarray Daten zu analysieren. Wir haben das verantwortliche Gen (Solyc02g005200) identifiziert und waren in der Lage den verursachenden Phänotyp durch eine heterologe Komplementation eines paramutationsinsensitiven Transgens des Orthologs aus Arabidopsis thaliana vollständig zu unterdrücken. Weiterhin konnten wir zeigen, dass eine Suppressormutante ein global verändertes DNA-Methylierungsmuster aufweist und es durch eine große Deletion zu einer Genfusion gekommen ist, an der eine Histon-Deacetylase beteiligt ist. Zusammenfassend sind meine entwickelten und implementierten Algorithmen und Datenanalysen geeignet, um NMI zu untersuchen und haben wie folgt zu neuen Einsichten über solche Phänomene verholfen: (a) durch die Rekonstruktion von PMGs (SAGBAC) als Voraussetzung um Mitochondrien-assoziierte Phänotypen zu studieren, (b) durch die Identifizierung von Genen (CM), welche interplastidäre Kompetition auslösen sowie (c) durch Anwendung einer DNA-/Bisulfit-seq Analysepipeline zur Beantwortung der Ursache eines transgenerational epigenetischen Vererbungsphänomens. KW - non-Mendelian inheritance KW - de novo assembly KW - mitochondria KW - chloroplasts KW - paramutation KW - next generation sequencing KW - bisulfite sequencing KW - plant research KW - Bisulfit Sequenzierung KW - Chloroplasten KW - De novo Assemblierung KW - Mitochondrien KW - Sequenzierungstechnologien der nächsten Generation KW - nicht-Mendelsche Vererbung KW - Paramutation KW - Pflanzenforschung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549001 ER - TY - THES A1 - Witt, Sandra T1 - Die Rolle der DGDG Synthase DGD1 bei der Galaktolipid Synthese in den Hüllmembranen von Chloroplasten T1 - The role of DGDG synthase DGD1 in galactolipid synthesis in the envelopes of chloroplasts N2 - In den Chloroplasten von höheren Pflanzen sind die Galaktolipide Monogalaktosyldiacylglycerol (MGDG) und Digalaktosyldiacylglycerol (DGDG) die am weitesten verbreiteten Lipide. In dieser Forschungsarbeit wurde die Funktion der DGDG Synthase DGD1, und insbesondere die Funktion des N-terminalen Bereichs dieses Enzyms in der Modellpflanze Arabidopsis thaliana untersucht. Die Überexpression des N-terminalen Bereichs von DGD1 in WT-Col2 resultierte in einem reduzierten Wachstum, welches sich jedoch von der dgd1-1 Mutante unterschied. Dies legte bereits nahe, dass die Expression von N-DGD1 einen negativen Einfluss auf das Wachstum hat. Durch Studien in einem heterologen E.coli Expressionssystem konnte diese These bestätigt werden. Zellen, die ausschließlich N-DGD1 zusammen mit einer MGD Synthase aus Gurke exprimierten, waren im Wachstum stark beeinträchtigt. Nicht nur der N-terminale Bereich von DGD1, auch der N-terminale Bereich von MGD1 besitzt eine Funktion als Transitpeptid und ist somit ein wichtiger Faktor zur korrekten Lokalisierung des MGD1 Proteins. In dieser Arbeit ist es gelungen, ein Fusionskonstrukt aus N-MGD1 und DGD2 in die dgd1-1 Mutante zu transferieren und damit das reduzierte Wachstum zu komplementieren. Frühere Versuche, ein reduziertes dgd1-1 Wachstum mit DGD2 allein zu komplementieren, scheiterten. Somit gibt dies einen Hinweis darauf, dass N-MGD1 als Transitpeptid fungieren kann. Bindungsstudien zur Interaktion von DGD1 und N-DGD1 Protein zeigten, dass die polaren Lipide MGDG und DGDG in Wechselwirkung mit dem N-terminalen Bereich von DGD1 treten. Bis zum heutigen Zeitpunkt ist nicht erforscht, wie der Transport von DGDG und MGDG zwischen den Hüllmembranen des Chloroplasten erfolgt. Die in dieser Arbeit angefertigen Bindungsstudien konnten Hinweise darauf geben, dass N-DGD1 als eine Art „Antiporter“ fungiert, um MGDG und DGDG zwischen den Hüllmembranen zu transportieren. Weiterhin wurden Bindungsstudien zur Erforschung von Interaktionen der Glykosyltransferasen DGD1, DGD2, MGD1, MGD2 und MGD3 angefertigt. Dabei wurden Wechselwirkungen zwischen den Glykosyltransferasen DGD1, DGD2 und MGD2 detektiert. Interessant ist, dass Hinweise auf eine Dimerbildung bestimmter Enzyme gefunden wurden, so für DGD1 und MGD2. Ein weiterer Ansatz zur Erforschung von Wechselwirkungen von DGD1 Protein mit bis jetzt unbekannten Proteinen war die Expression von DGD1-StrepIITag und DGD1-CTAPTag Fusionsproteinen in dgd1-1 Mutanten. Es wurden für beide Tags transgene Linien generiert, die im Wachstum komplementiert waren und wildtypähnliche Mengen an DGDG akkumulierten. Die Expression der verschiedenen Tags in den Pflanzen war sehr unterschiedlich, wobei der DGD1-CTAP-Tag am stärksten exprimiert war. Mit Pflanzenmaterial dieser Linien kann nun eine Aufreinigung des getaggten Proteins und eventueller Interaktionspartner erfolgen. N2 - The two galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG) constitute the bulk of membrane lipids in chloroplasts. They play a crucial role in organell development and are important for the functionality of photosynthetic complexes in thylakoids. Two DGDG synthases, DGD1 and DGD2, are found in Arabidopsis, and the two proteins localize to the chloroplast envelope membranes. The dgd1 mutant which contains only 10% of wild type amounts of DGDG shows a dwarf phenotype and reduced photosynthetic capacity. The DGD1 protein consists of two domains. While the C-terminal part is responsible for galactosyltransferase activity, no clear function can be attributed to the N-terminal extension. To study the function of the N-terminal part of DGD1 in chloroplast membrane lipid synthesis, translational fusion proteins harboring different DGDG synthase sequences were introduced into wild type and dgd1 mutant plants and analyzed for changes in lipid content and growth. The dgd1 mutant phenotype was complemented with a full-length DGD1 sequence, but not with DGD2. Interestingly, the chimeric fusion of the N-terminal part of DGD1 with DGD2 did complement the dgd1 growth and lipid deficiency. Over-expression of the N-terminal part of DGD1 in wild type Arabidopsis plants affected growth and resulted in alterations of leaf morphology. However, this phenotype was distinct from that observed for dgd1, because these transgenic plants contain normal amounts of galactolipids, and leaves are not yellowish. In conclusion, these data suggest that the N-terminal region of DGD1 might be important for galactolipid transport across the chloroplast envelope membranes towards the thylakoid membranes. Interaction studies between N-DGD1 Protein and different membrane lipids showed an interaction between N-DGD1 Protein and MGDG and DGDG. Till now not much is known about the transport mechanisms of DGDG and MGDG between the chloroplast envelopes. This work gave some indications, that the N-terminal part of DGD1 is involved in the transport of MGDG and DGDG between the chloroplast envelopes. Furthermore interaction studies were made for the glycosyltransferases DGD1, DGD2 MGD1, MGD2 and MGD3. Interactions between DGD1, DGD2 and MGD2 were observed. Another way for finding interacting proteins of DGD1 was the expression of a DGD1-CTAPTag fusion protein in the dgd1-1 mutant. These transgenic lines contained a high amount of DGD1-CTAPTag protein. With these plants its now possible to analyze interacting partners of DGD1 with help of Tandem Affinity Purification method. KW - Galaktolipide KW - DGD1 KW - Lipidsynthese KW - Chloroplasten KW - galactolipids KW - DGD1 KW - lipid synthesis KW - chloroplasts Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-33447 ER -