TY - JOUR A1 - Schimka, Selina A1 - Klier, Dennis Tobias A1 - de Guerenu, Anna Lopez A1 - Bastian, Philipp A1 - Lomadze, Nino A1 - Kumke, Michael Uwe A1 - Santer, Svetlana T1 - Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator JF - Journal of physics : Condensed matter N2 - Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm-3(+) or Er-3(+) as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < lambda(em) < 480 nm (for Tm-3(+), three and four photon induced emission) or 525 nm < lambda(em) < 545 nm (for Er-3(+), two photon induced emission), respectively. Especially for UCNPs containing Tm-3(+) a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (lambda(ex) = 976 nm) in the presence of the Tm-3(+)-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR. KW - upconversion nanoparticles KW - azobenzene containing surfactants KW - kinetic of cis-trans isomerization Y1 - 2019 U6 - https://doi.org/10.1088/1361-648X/aafcfa SN - 0953-8984 SN - 1361-648X VL - 31 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Scholz, Robert A1 - Lindner, Steven A1 - Loncaric, Ivor A1 - Tremblay, Jean Christophe A1 - Juaristi, J. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Vibrational response and motion of carbon monoxide on Cu(100) driven by femtosecond laser pulses: Molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - Carbon monoxide on copper surfaces continues to be a fascinating, rich microlab for many questions evolving in surface science. Recently, hot-electron mediated, femtosecond-laser pulse induced dynamics of CO molecules on Cu(100) were the focus of experiments [Inoue et al., Phys. Rev. Lett. 117, 186101 (2016)] and theory [Novko et al., Phys. Rev. Lett. 122, 016806 (2019)], unraveling details of the vibrational nonequilibrium dynamics on ultrashort (subpicoseconds) timescales. In the present work, full-dimensional time-resolved hot-electron driven dynamics are studied by molecular dynamics with electronic friction (MDEF). Dissipation is included by a friction term in a Langevin equation which describes the coupling of molecular degrees of freedom to electron-hole pairs in the copper surface, calculated from gradient-corrected density functional theory (DFT) via a local density friction approximation (LDFA). Relaxation due to surface phonons is included by a generalized Langevin oscillator model. The hot-electron induced excitation is described via a time-dependent electronic temperature, the latter derived from an improved two-temperature model. Our parameter-free simulations on a precomputed potential energy surface allow for excellent statistics, and the observed trends are confirmed by on-the-fly ab initio molecular dynamics with electronic friction (AIMDEF) calculations. By computing time-resolved frequency maps for selected molecular vibrations, instantaneous frequencies, probability distributions, and correlation functions, we gain microscopic insight into hot-electron driven dynamics and we can relate the time evolution of vibrational internal CO stretch-mode frequencies to measured data, notably an observed redshift. Quantitatively, the latter is found to be larger in MDEF than in experiment and possible reasons are discussed for this observation. In our model, in addition we observe the excitation and time evolution of large-amplitude low-frequency modes, lateral CO surface diffusion, and molecular desorption. Effects of surface atom motion and of the laser fluence are also discussed. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.245431 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 24 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Schuck, Götz A1 - Lehmann, Frederike A1 - Ollivier, Jacques A1 - Mutka, Hannu A1 - Schorr, Susan T1 - Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI(3-x)Cl(x) perovskites JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Hybrid halide perovskites, MAPbI(3), MAPbI(2.94)Cl(0.0)6, and MAPbCl(3) (MA, methylammonium), were investigated using inelastic and quasielastic neutron scattering (QENS) with the aim of elucidating the impact of chloride substitution on the rotational dynamics of MA. In this context, we discuss the influence of the inelastic neutron scattering caused by low-energy phonons on QENS, resulting from the MA rotational dynamics in MAPbI(3-x)Cl(x). Through a comparative temperature-dependent QENS investigation with different energy resolutions, which allow a wide Fourier time window, we achieved a consistent description of the influence of chlorine substitution in MAPbI(3) on the MA dynamics. Our results showed that chlorine substitution in the low-temperature orthorhombic phase leads to a weakening of the hydrogen bridge bonds, since the characteristic relaxation times of C-3 rotation at 70 K in MAPbCl(3) (135 ps) and MAPbI(2.94)Cl(0.06) (485 ps) are much shorter than that in MAPbI(3) (1635 ps). For the orthorhombic phase, we obtained the activitin energies from the temperature-dependent characteristic relaxation times tau (c3). by Arrhenius fits, indicating lower values of E-a for MAPbCl(3) and MAPbI(2.94)Cl(0.06) compared to that of MAPbI(3). We also performed QENS analyses at 190 K for all three samples. Here, we observed that MAPbCI(3) shows slower MA rotational dynamics than MAPbI(3) in the disordered structure. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b01238 SN - 1932-7447 VL - 123 IS - 18 SP - 11436 EP - 11446 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schultze, Christiane A1 - Schmidt, Bernd T1 - Functionalized Benzofurans via Microwave-Promoted Tandem Claisen-Rearrangement/5-endo-dig Cyclization JF - Journal of heterocyclic chemistry N2 - Ortho-allyloxy alkinyl benzenes undergo, upon microwave irradiation in dimethylformamide, a tandem sequence of Claisen-rearrangement and 5-endo-dig cyclization to furnish 7-allyl-substituted benzofurans. With terminal alkynes, chroman-4-ones and enaminoketones become the main products. A mechanistic proposal for this observation relies on a reaction of the starting material with the solvent dimethylformamide under the microwave conditions. Y1 - 2019 U6 - https://doi.org/10.1002/jhet.3671 SN - 0022-152X SN - 1943-5193 VL - 56 IS - 9 SP - 2619 EP - 2629 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans-Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response JF - Chemistry - a European journal N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902536 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 53 SP - 12412 EP - 12422 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schönemann, Eric A1 - Koc, Julian A1 - Aldred, Nick A1 - Clare, Anthony S. A1 - Laschewsky, André A1 - Rosenhahn, Axel A1 - Wischerhoff, Erik T1 - Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties JF - Macromolecular rapid communications N2 - The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance. KW - antifouling KW - coatings KW - crosslinking KW - hydrophilic polymers KW - polyzwitterions Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900447 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich A1 - Suslova, E. N. T1 - Conformational Analysis of (1,1′-Phenyl-1,1′-silacyclohex-1-yl)disiloxane BT - DFT and Low-Temperature 13C NMR Spectroscopy Study JF - Russian journal of general chemistry N2 - The DFT and MP2 theoretical conformational analysis of the recently synthesized (1,1-phenyl-1,1-silacyclohex-1-yl)disiloxane has revealed the energetic preference of the Ph-ax,Ph-ax conformer. The Ph-ax,Ph-ax: Ph-ax,Ph-eq: Ph-eq,Ph-eq conformers ratio has been estimated as of 46.6: 33.1: 20.3 from the M062X/6-311G(d,p) free energy simulation, suggesting the possibility of detecting individual conformers experimentally, e.g., by low-temperature H-1 and C-13 NMR spectroscopy. However, only the presence of several conformers has been detected by means of H-1 NMR spectroscopy at 113 K; determination of the (Hz) and G(#) (kcal/mol) parameters for the 6-membered ring interconversion has been impossible due to the signals broadening at low temperature, signal temperature shifts, and extremely low barrier of ring inversion at T-c < 113 K. KW - siloxanes KW - silacyclohexanes KW - conformational analysis KW - DFT and MP2 simulation KW - low-temperature NMR spectroscopy Y1 - 2019 U6 - https://doi.org/10.1134/S1070363219040121 SN - 1070-3632 SN - 1608-3350 VL - 89 IS - 4 SP - 713 EP - 716 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Tran Dinh Phien, A1 - Shlykov, Sergey A. A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich T1 - 1-Methylthio-1-phenyl-1-silacyclohexane: Synthesis, conformational preferences in gas and solution by GED, NMR and theoretical calculations JF - Tetrahedron N2 - 1-Methylthio-1-phenyl-1-silacyclohexane 1, the first silacyclohexane with the sulfur atom at silicon, was synthesized and its molecular structure and conformational preferences studied by gas-phase electron diffraction (GED) and low temperature C-13 and Si-29 NMR spectroscopy (LT NMR). Quantum-chemical calculations were carried out both for the isolated species and solvate complexes in gas and in polar medium. The predominance of the 1-MeSaxPheq conformer in gas phase (1-Ph-eq :1-Ph-ax = 55:45, Delta G degrees = 0.13 kcal/mol) determined from GED is consistent with that measured in the freon solution by LT NMR (1-Ph-eq:1-Ph-ax = 65:35, Delta G degrees = 0.12 kcal/mol), the experimentally measured ratios being close to that estimated by quantum chemical calculations at both the DFT and MP2 levels of theory. (C) 2019 Elsevier Ltd. All rights reserved. KW - 1-Methylthio-1-phenyl-1-silacyclohexane KW - Conformational analysis KW - Gas phase electron diffraction KW - Low-temperature C-13 and Si-29 NMR KW - DFT and MP2 calculations Y1 - 2019 U6 - https://doi.org/10.1016/j.tet.2019.130677 SN - 0040-4020 VL - 75 IS - 46 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shou, Keyun A1 - Bremer, Anne A1 - Rindfleisch, Tobias A1 - Knox-Brown, Patrick A1 - Hirai, Mitsuhiro A1 - Rekas, Agata A1 - Garvey, Christopher J. A1 - Hincha, Dirk K. A1 - Stadler, Andreas M. A1 - Thalhammer, Anja T1 - Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp01768b SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 34 SP - 18727 EP - 18740 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Sperling, Marcel A1 - Reifarth, Martin A1 - Grobe, Richard A1 - Böker, Alexander T1 - Tailoring patches on particles: a modified microcontact printing routine using polymer-functionalised stamps JF - Chemical communications N2 - Herein, we report a modified microcontact printing (mu CP) routine suitable to introduce particle patches of a low molecular weight ink (LMWI) on porous SiO2 microparticles. Thereby, patch precision could be significantly improved by utilising stamps which have been surface-functionalised with grafted polymers. This improvement was evaluated by a profound software-assisted statistical analysis. Y1 - 2019 U6 - https://doi.org/10.1039/c9cc03903a SN - 1359-7345 SN - 1364-548X VL - 55 IS - 68 SP - 10104 EP - 10107 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Szatmari, Istvan A1 - Belasri, Khadija A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Fulop, Ferenc T1 - Ortho-Quinone methide driven synthesis of new O,N- or N,N-Heterocycles JF - ChemistryOpen : including thesis treasury N2 - To synthesize functionalized Mannich bases that can serve two different types of ortho-quinone methide (o-QM) intermediates, 2-naphthol and 6-hydroxyquinoline were reacted with salicylic aldehyde in the presence of morpholine. The Mannich bases that can form o-QM and aza-o-QM were also synthesized by mixing 2-naphthol, 2-nitrobenzaldehyde, and morpholine followed by reduction of the nitro group. The highly functionalized aminonaphthol derivatives were then tested in [4+2] cycloaddition with different cyclic imines. The reaction proved to be both regio- and diastereoselective. In all cases, only one reaction product was obtained. Detailed structural analyses of the new polyheterocycles as well as conformational studies including DFT modelling were performed. The relative stability of o-QMs/aza-o-QM were also calculated, and the regioselectivity of the reactions could be explained only when the cycloaddition started from aminodiol 4. It was summarized that starting from diaminonaphthol 25, the regioselectivity of the reaction is driven by the higher nucleophilicity of the amino group compared with the hydroxy group. 12H-benzo[a]xanthen-12-one (11), formed via o-QM formation, was isolated as a side product. The proton NMR spectrum of 11 proved to be very unique from NMR point of view. The reason for the extreme low-field position of proton H-1 could be accounted for by theoretical calculation of structure and spatial magnetic properties of the compound in combination of ring current effects of the aromatic moieties and steric compression within the heavily hindered H(1)-C(1)-C(12b)-C(12a)-C(12)=O structural fragment. KW - ortho-quinone methide (o-QMs) KW - modified Mannich reaction KW - cycloaddition KW - NMR spectroscopy KW - conformational analysis KW - DFT calculations Y1 - 2019 U6 - https://doi.org/10.1002/open.201900150 SN - 2191-1363 VL - 8 IS - 7 SP - 961 EP - 971 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Taubert, Andreas A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - de Zea Bermudez, Veronica T1 - Advanced hybrid nanomaterials JF - Beilstein journal of nanotechnology KW - colloidal chemistry KW - environmental remediation KW - hybrid nanomaterials KW - nanocomposite KW - nanofillers KW - nanomedicine KW - nanostructures KW - polymer fillers KW - pore templating KW - smart materials Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.247 SN - 2190-4286 VL - 10 SP - 2563 EP - 2567 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt am Main ER - TY - JOUR A1 - Ugwuja, Chidinma G. A1 - Adelowo, Olawale O. A1 - Ogunlaja, Aemere A1 - Omorogie, Martins O. A1 - Olukanni, Olumide D. A1 - Ikhimiukor, Odion O. A1 - Iermak, Ievgeniia A1 - Kolawole, Gabriel A. A1 - Günter, Christina A1 - Taubert, Andreas A1 - Bodede, Olusola A1 - Moodley, Roshila A1 - Inada, Natalia M. A1 - Camargo, Andrea S.S. de A1 - Unuabonah, Emmanuel Iyayi T1 - Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites JF - ACS applied materials & interfaces N2 - This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. KW - disinfection KW - nanocomposite material KW - multidrug-resistant Escherichia coli KW - water KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01212 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 28 SP - 25483 EP - 25494 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Nöske, Robert A1 - Weber, Jens A1 - Günter, Christina A1 - Taubert, Andreas T1 - New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water JF - Beilstein journal of nanotechnology N2 - A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between approximate to 150 and 300 m(2)/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 degrees C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. KW - 4-nitrophenol KW - Carica papaya seeds KW - clay KW - E. coli KW - micro/mesoporous KW - nanocomposite KW - water remediation Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.11 SN - 2190-4286 VL - 10 SP - 119 EP - 131 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Vishnevetskaya, Natalya S. A1 - Hildebrand, Viet A1 - Nizardo, Noverra Mardhatillah A1 - Ko, Chia-Hsin A1 - Di, Zhenyu A1 - Radulescu, Aurel A1 - Barnsley, Lester C. A1 - Müller-Buschbaum, Peter A1 - Laschewsky, André A1 - Papadakis, Christine M. T1 - All-in-One "Schizophrenic" self-assembly of orthogonally tuned thermoresponsive diblock copolymers JF - Langmuir N2 - Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly(N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition. Thus, successive thermal switching results in "schizophrenic" micellization, in which the roles of the hydrophobic core block and the hydrophilic shell block are interchanged depending on the temperature. Furthermore, by virtue of the strong electrolyte-sensitivity of the zwitterionic polysulfobetaine block, we succeeded to shift its UCST below the LCST of the PNIPMAM block by adding small amounts of an electrolyte, thus inverting the pathway of switching. This superimposed orthogonal switching by electrolyte addition enabled us to control the switching scenarios between the two types of micelles (i) via an insoluble state, if the LCST-type cloud point is below the UCST-type cloud point, which is the case at low salt concentrations or (ii) via a molecularly dissolved state, if the LCST-type cloud point is above the UCST-type cloud point, which is the case at high salt concentrations. Systematic variation of the block lengths allowed for verifying the anticipated behavior and identifying the molecular architecture needed. The versatile and tunable self-assembly offers manifold opportunities, for example, for smart emulsifiers or for sophisticated carrier systems. Y1 - 2019 U6 - https://doi.org/10.1021/acs.langmuir.9b00241 SN - 0743-7463 VL - 35 IS - 19 SP - 6441 EP - 6452 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Heck, Christian A1 - Schürmann, Robin Mathis A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV induced DNA strand breaks BT - influence of the radiosensitizers 5-bromouracil and 8-bromoadenine JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (U-5Br) and 8-bromoadenine ((8Br)A) are investigated. U-5Br was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to U-5Br, whereas guanine as a neighboring nucleobase decreases the activity of U-5Br indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to U-5Br separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and U-5Br until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of U-5Br. (8Br)A was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with (8Br)A. Y1 - 2019 U6 - https://doi.org/10.1039/c8cp06813e SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 4 SP - 1972 EP - 1979 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin Mathis A1 - Heck, Christian A1 - Meiling, Till A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks BT - Influence of the DNA Sequence and Substrate JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - vacuum-UV radiation Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201801152 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Walczak, Ralf A1 - Savateev, Aleksandr A1 - Heske, Julian A1 - Tarakina, Nadezda V. A1 - Sahoo, Sudhir A1 - Epping, Jan D. A1 - Kuehne, Thomas D. A1 - Kurpil, Bogdan A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design JF - Sustainable energy & fuels N2 - Thermal treatment of hexaazatriphenylene-hexacarbonitrile (HAT-CN) in the temperature range from 500 degrees C to 700 degrees C leads to precise control over the degree of condensation, and thus atomic construction and porosity of the resulting C2N-type materials. Depending on the condensation temperature of HAT-CN, nitrogen contents of more than 30 at% can be reached. In general, these carbons show adsorption properties which are comparable to those known for zeolites but their pore size can be adjusted over a wider range. At condensation temperatures of 525 degrees C and below, the uptake of nitrogen gas remains negligible due to size exclusion, but the internal pores are large and polarizing enough that CO2 can still adsorb on part of the internal surface. This leads to surprisingly high CO2 adsorption capacities and isosteric heat of adsorption of up to 52 kJ mol(-1). Theoretical calculations show that this high binding enthalpy arises from collective stabilization effects from the nitrogen atoms in the C2N layers surrounding the carbon atom in the CO2 molecule and from the electron acceptor properties of the carbon atoms from C2N which are in close proximity to the oxygen atoms in CO2. A true CO2 molecular sieving effect is achieved for the first time in such a metal-free organic material with zeolite-like properties, showing an IAST CO2/N-2 selectivity of up to 121 at 298 K and a N-2/CO2 ratio of 90/10 without notable changes in the CO2 adsorption properities over 80 cycles. Y1 - 2019 U6 - https://doi.org/10.1039/c9se00486f SN - 2398-4902 VL - 3 IS - 10 SP - 2819 EP - 2827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Walkowiak, Jacek A1 - Lu, Yan A1 - Gradzielski, Michael A1 - Zauscher, Stefan A1 - Ballauff, Matthias T1 - Thermodynamic analysis of the uptake of a protein in a spherical polyelectrolyte brush JF - Macromolecular rapid communications N2 - A thermodynamic study of the adsorption of Human Serum Albumin (HSA) onto spherical polyelectrolyte brushes (SPBs) by isothermal titration calorimetry (ITC) is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly(acrylic acid). ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two-step model. The free energy of binding Delta Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy (FT-IR) demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion release. KW - Spherical polyelectrolyte brushes KW - proteins KW - ITC KW - thermodynamics KW - enthalpy-entropy compensation (EEC) Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900421 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wang, Weiwei A1 - Xu, Xun A1 - Li, Zhengdong A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young’s modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels. KW - Poly(n-butyl acrylate) KW - mechanical property KW - vascular graft KW - mesenchymal stem cells KW - VEGF Y1 - 2019 U6 - https://doi.org/10.3233/CH-189418 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 277 EP - 289 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Wanjiku, Barbara A1 - Yamamoto, Kenji A1 - Klossek, Andre A1 - Schumacher, Fabian A1 - Pischon, Hannah A1 - Mundhenk, Lars A1 - Rancan, Fiorenza A1 - Judd, Martyna M. A1 - Ahmed, Muniruddin A1 - Zoschke, Christian A1 - Kleuser, Burkhard A1 - Rühl, Eckart A1 - Schäfer-Korting, Monika T1 - Qualifying X-ray and Stimulated Raman Spectromicroscopy for Mapping Cutaneous Drug Penetration JF - Analytical chemistry N2 - Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques. Y1 - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b00519 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 11 SP - 7208 EP - 7214 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Weis, Philipp A1 - Hess, Andreas A1 - Kircher, Gunnar A1 - Huang, Shilin A1 - Auernhammer, Günter K. A1 - Koynov, Kaloian A1 - Butt, Hans-Jürgen A1 - Wu, Si T1 - Effects of Spacers on Photoinduced Reversible Solid-to-Liquid Transitions of Azobenzene-Containing Polymers JF - Chemistry - a European journal N2 - Photoisomerization in some azobenzene-containing polymers (azopolymers) results in reversible solid-to-liquid transitions because trans- and cis-azopolymers have different glass transition temperatures. This property enables photoinduced healing and processing of azopolymers with high spatiotemporal resolution. However, a general lack of knowledge about the influence of the polymer structure on photoinduced reversible solid-to-liquid transitions hinders the design of such novel polymers. Herein, the synthesis and photoresponsive behavior of new azopolymers with different lengths of spacers between the polymer backbone and the azobenzene group on the side chain are reported. Azopolymers with no and 20 methylene spacers did not show photoinduced solid-to-liquid transitions. Azopolymers with 6 or 12 methylene spacers showed photoinduced solid-to-liquid transitions. This study demonstrates that spacers are essential for azopolymers with photoinduced reversible solid-to-liquid transitions, and thus, gives an insight into how to design azopolymers for photoinduced healing and processing. KW - azobenzenes KW - isomerization KW - photochemistry KW - polymers KW - self-healing Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902273 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 46 SP - 10946 EP - 10953 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wolf, Thomas J. A. A1 - Sanchez, David M. A1 - Yang, J. A1 - Parrish, R. M. A1 - Nunes, J. P. F. A1 - Centurion, M. A1 - Coffee, R. A1 - Cryan, J. P. A1 - Gühr, Markus A1 - Hegazy, Kareem A1 - Kirrander, Adam A1 - Li, R. K. A1 - Ruddock, J. A1 - Shen, Xiaozhe A1 - Vecchione, T. A1 - Weathersby, S. P. A1 - Weber, Peter M. A1 - Wilkin, K. A1 - Yong, Haiwang A1 - Zheng, Q. A1 - Wang, X. J. A1 - Minitti, Michael P. A1 - Martinez, Todd J. T1 - The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction JF - Nature chemistry N2 - The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subangstrom length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale. KW - Organic chemistry KW - Photochemistry KW - Physical chemistry KW - Theoretical chemistry Y1 - 2019 U6 - https://doi.org/10.1038/s41557-019-0252-7 SN - 1755-4330 SN - 1755-4349 VL - 11 IS - 6 SP - 504 EP - 509 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Xiong, Tao A1 - Saalfrank, Peter T1 - Vibrationally Broadened Optical Spectra of Selected Radicals and Cations Derived from Adamantane: A Time-Dependent Correlation Function Approach JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Diamondoids are hydrogen-saturated molecular motifs cut out of diamond, forming a class of materials with tunable optoelectronic properties. In this work, we extend previous work on neutral, closed-shell diamondoids by computing with hybrid density functional theory and time-dependent correlation functions vibrationally broadened absorption spectra of cations and radicals derived from the simplest diamondoid, adamantane, namely, the neutral 1- and 2-adamantyl radicals (C10H15), the 1- and 2-adamantyl cations (C10H15+), and the adamantane radical cation (C10H16+). For selected cases, we also report vibrationally broadened emission, photoelectron, and resonance Raman spectra. Furthermore, the effect of the damping factor on the vibrational fine-structure is studied. The following trends are found: (1) Low-energy absorptions of the adamantyl radicals and cations, and of the adamantane cation, are all strongly red-shifted with respect to adamantane; (2) also, emission spectra are strongly red-shifted, whereas photoelectron spectra are less affected for the cases studied; (3) vibrational fine-structures are reduced compared to those of adamantane; (4) the spectroscopic signals of 1- and 2-adamantyl species are significantly different from each other; and (5) reducing the damping factor has only a limited effect on the vibrational fine-structure in most cases. This suggests that removing hydrogen atoms and/or electrons from adamantane leads to new optoelectronic properties, which should be detectable by vibronic spectroscopy. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpca.9b03305 SN - 1089-5639 SN - 1520-5215 VL - 123 IS - 41 SP - 8871 EP - 8880 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yan, Runyu A1 - Josef, Elinor A1 - Huang, Haijian A1 - Leus, Karen A1 - Niederberger, Markus A1 - Hofmann, Jan P. A1 - Walczak, Ralf A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers JF - Advanced functional materials N2 - Microporous nitrogen-rich carbon fibers (HAT-CNFs) are produced by electrospinning a mixture of hexaazatriphenylene-hexacarbonitrile (HAT-CN) and polyvinylpyrrolidone and subsequent thermal condensation. Bonding motives, electronic structure, content of nitrogen heteroatoms, porosity, and degree of carbon stacking can be controlled by the condensation temperature due to the use of the HAT-CN with predefined nitrogen binding motives. The HAT-CNFs show remarkable reversible capacities (395 mAh g(-1) at 0.1 A g(-1)) and rate capabilities (106 mAh g(-1) at 10 A g(-1)) as an anode material for sodium storage, resulting from the abundant heteroatoms, enhanced electrical conductivity, and rapid charge carrier transport in the nanoporous structure of the 1D fibers. HAT-CNFs also serve as a series of model compounds for the investigation of the contribution of sodium storage by intercalation and reversible binding on nitrogen sites at different rates. There is an increasing contribution of intercalation to the charge storage with increasing condensation temperature which becomes less active at high rates. A hybrid sodium-ion capacitor full cell combining HAT-CNF as the anode and salt-templated porous carbon as the cathode provides remarkable performance in the voltage range of 0.5-4.0 V (95 Wh kg(-1) at 0.19 kW kg(-1) and 18 Wh kg(-1) at 13 kW kg(-1)). KW - carbon fibers KW - nitrogen-doped carbon KW - sodium-ion capacitors KW - sodium storage mechanism Y1 - 2019 U6 - https://doi.org/10.1002/adfm.201902858 SN - 1616-301X SN - 1616-3028 VL - 29 IS - 26 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yu, Hongtao A1 - Quan, Ting A1 - Mei, Shilin A1 - Kochovski, Zdravko A1 - Huang, Wei A1 - Meng, Hong A1 - Lu, Yan T1 - Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode BT - Efficient, Scalable, and Recyclable JF - Nano-Micro Letters N2 - HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting. KW - Electrodeposition KW - Ni nanodots KW - Bifunctional catalysts KW - Water splitting KW - Large-size Y1 - 2019 U6 - https://doi.org/10.1007/s40820-019-0269-x SN - 2311-6706 SN - 2150-5551 VL - 11 IS - 41 PB - Shanghai JIAO TONG univ press CY - Shanghai ER - TY - JOUR A1 - Yuan, Jinkai A1 - Neri, Wilfrid A1 - Zakri, Cecile A1 - Merzeau, Pascal A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Poulin, Philippe T1 - Shape memory nanocomposite fibers for untethered high-energy microengines JF - Science N2 - Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw3722 SN - 0036-8075 SN - 1095-9203 VL - 365 IS - 6449 SP - 155 EP - 158 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Zaitsev-Doyle, John J. A1 - Puchert, Anke A1 - Pfeifer, Yannik A1 - Yan, Hao A1 - Yorke, Briony A. A1 - Müller-Werkmeister, Henrike A1 - Uetrecht, Charlotte A1 - Rehbein, Julia A1 - Huse, Nils A1 - Pearson, Arwen R. A1 - Sans, Marta T1 - Synthesis and characterisation of alpha-carboxynitrobenzyl photocaged l-aspartates for applications in time-resolved structural biology JF - RSC Advances N2 - We report a new synthetic route to a series of a-carboxynitrobenzyl photocaged L-aspartates for application in time-resolved structural biology. The resulting compounds were characterised in terms of UV/Vis absorption properties, aqueous solubility and stability, and photocleavage rates (tau = ms to ms) and quantum yields (phi = 0.05 to 0.14). Y1 - 2019 U6 - https://doi.org/10.1039/c9ra00968j SN - 2046-2069 VL - 9 IS - 15 SP - 8695 EP - 8699 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehbe, Kerstin A1 - Lange, Alyna A1 - Taubert, Andreas T1 - Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity JF - Energy Fuels N2 - New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology. Y1 - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b03379 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 12 SP - 12885 EP - 12893 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Balk, Maria A1 - Lendlein, Andreas T1 - Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks JF - Chemistry of materials : a publication of the American Chemical Society N2 - Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand. Y1 - 2019 U6 - https://doi.org/10.1021/acs.chemmater.9b00363 SN - 0897-4756 SN - 1520-5002 VL - 31 IS - 15 SP - 5402 EP - 5407 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Quanchao A1 - Rudolph, Tobias A1 - Benitez, Alejandro J. A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes JF - Smart materials and structures N2 - Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300% and 100% reversible strain changes of εʹrev = 22% ± 1% and 6% ± 1% were measured, with switching temperature ranges of 10 °C–30 °C and 45 °C–60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11% ± 3% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality. KW - reversible shape-memory effect KW - fiber meshes KW - electrospinning Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab10a1 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Guo, Wen-Bin A1 - Tang, Ying-Ying A1 - Xu, Jin-Qiu A1 - He, Zhang-Zhen T1 - Observation of Spin Relaxation in a Vanadate Chloride with Quasi-One-Dimensional Linear Chain JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - A new cobalt(II) vanadate chloride, Pb2Co(OH)(V2O7)Cl, has been synthesized under mild hydrothermal conditions. It contains quasi-one-dimensional (1D) linear chains built by edge-sharing of (CoO6)-O-II octahedra. The cobalt(II) oxide chains are further interconnected by (V2O7)(4-) dimers into a three-dimensional (3D) anionic framework with Pb2+ and Cl- ions residing in Co4V8 12-member ring tunnels. The intrachain Co center dot center dot center dot Co distance is 3.041 angstrom, while the interchain distances are 8.742 and 9.256 angstrom. Magnetic measurements suggest the ferromagnetic intrachain and the antiferromagnetic interchain interactions with a specific value of J(intra)/J(inter) = 1.7 x 10(3). Zero-field heat capacity demonstrates the magnetic long-range ordering at 5.5 K. Alternating current (AC) magnetic susceptibility under zero external direct current (DC) fields displays two slow magnetic relaxations at low temperatures, giving characteristic relaxations (tau(0)) of 1.2(3) x 10(-12) and 1.9(4) x 10(-10) s with effective energy barriers (Delta(r)) of 76.1(2) and 48.4(5) K. The energy barrier between the spin up and spin-down states can be ascribed to the ferromagnetic spin chain and the Ising-like magnetic anisotropy in Pb2Co(OH)(V2O7)Cl. Y1 - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01839 SN - 1528-7483 SN - 1528-7505 VL - 19 IS - 4 SP - 2228 EP - 2234 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Kochovski, Zdravko A1 - Lee, Hui-Chun A1 - Lu, Yan A1 - Zhang, Hemin A1 - Zhang, Jie A1 - Sun, Jian-Ke A1 - Yuan, Jiayin T1 - Ionic organic cage-encapsulating phase-transferable metal clusters JF - Chemical science N2 - Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal–ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min−1. Y1 - 2019 U6 - https://doi.org/10.1039/c8sc04375b SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 5 SP - 1450 EP - 1456 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zu, Fengshuo A1 - Amsalem, Patrick A1 - Egger, David A. A1 - Wang, Rongbin A1 - Wolff, Christian Michael A1 - Fang, Honghua A1 - Loi, Maria Antonietta A1 - Neher, Dieter A1 - Kronik, Leeor A1 - Duhm, Steffen A1 - Koch, Norbert T1 - Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements JF - The journal of physical chemistry letters N2 - Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3), we reveal the band dispersion in two high-symmetry directions and identify the global valence band maxima. With these benchmark data, we construct "standard" photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature for determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.8b03728 SN - 1948-7185 VL - 10 IS - 3 SP - 601 EP - 609 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zude, Manuela A1 - Hashim, Norhashila A1 - Hass, Roland A1 - Polley, Nabarun A1 - Regen, Christian T1 - Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging JF - Postharvest Biology and Technology N2 - Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell’s diffusion theory either calculating μa [cm−1] and μs’ [cm−1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs’, non-destructively. Setting μs’ according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7% in comparison to fitting μs’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs’ and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs’. KW - Absorption KW - European pear KW - Fruit quality KW - Phantoms KW - Reduced scattering coefficient KW - Scattering KW - Spatially resolved spectroscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.postharvbio.2019.04.002 SN - 0925-5214 SN - 1873-2356 VL - 153 SP - 161 EP - 168 PB - Elsevier CY - Amsterdam ER -