TY - JOUR A1 - Nöchel, Ulrich A1 - Reddy, Chaganti Srinivasa A1 - Wang, Ke A1 - Cui, Jing A1 - Zizak, Ivo A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 degrees C related to a broad melting transition (similar to 100 degrees C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (T-deform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 degrees C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low T-deform (<50 degrees C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units. Y1 - 2015 U6 - https://doi.org/10.1039/c4ta06586g SN - 2050-7488 SN - 2050-7496 VL - 3 IS - 16 SP - 8284 EP - 8293 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Roch, Toralf A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric inserts differing in their chemical composition as substrates for dendritic cell cultivation JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Dendritic cells (DC) contribute to immunity by presenting antigens to T cells and shape the immune response by the secretion of cytokines. Due to their immune stimulatory potential DC-based therapies are promising approaches to overcome tolerance e.g. against tumors. In order to enforce the immunogenicity of DCs, they have to be matured and activated in vitro, which requires an appropriate cell culture substrate, supporting their survival expansion and activation. Since most cell culture devices are not optimized for DC growth, it is hypothesized that polymers with certain physicochemical properties can positively influence the DC cultures. With the aim to evaluate the effects that polymers with different chemical compositions have on the survival, the activation status, and the cytokine/chemokine secretion profile of DC, their interaction with polystyrene (PS), polycarbonate (PC), poly(ether imide) (PEI), and poly(styrene-co-acrylonitrile) (PSAN)-based cell culture inserts was investigated. By using this insert system, which fits exactly into 24 well cell culture plates, effects induced from the culture dish material can be excluded. The viability of untreated DC after incubation with the different inserts was not influenced by the different inserts, whereas LPS-activatedDCshowed an increased survival after cultivation on PC, PS, and PSAN compared to tissue culture polystyrene (TCP). The activation status of DC estimated by the expression of CD40, CD80, CD83, CD86 and HLA-DR expression was not altered by the different inserts in untreated DC but slightly reduced when LPS-activated DC were cultivated on PC, PS, PSAN, and PEI compared to TCP. For each polymeric cell culture insert a distinct cytokine profile could be observed. Since inserts with different chemical compositions of the inserts did not substantially alter the behavior of DC all insert systems could be considered as alternative substrate. The observed increased survival on some polymers, which showed in contrast to TCP a hydrophobic surface, could be beneficial for certain applications such as T cell expansion and activation. KW - Biomaterials KW - dendritic cells KW - cell culture device KW - amorphous polymers Y1 - 2015 U6 - https://doi.org/10.3233/CH-152004 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 347 EP - 357 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Behl, Marc A1 - Yan, Wan A1 - Liu, Yue A1 - Xu, Xun A1 - Baudis, Stefan A1 - Li, Zhengdong A1 - Kurtz, Andreas A1 - Lendlein, Andreas A1 - Ma, Nan T1 - The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies. KW - Polyether ether ketone KW - mesenchymal stem cells KW - biocompatibility KW - cell-material interaction KW - osteogenic differentiation Y1 - 2015 U6 - https://doi.org/10.3233/CH-152001 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 301 EP - 321 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Bhaskar, Thanga Bhuvanesh Vijaya A1 - Ma, Nan A1 - Lendlein, Andreas A1 - Roch, Toralf T1 - The interaction of human macrophage subsets with silicone as a biomaterial JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Silicones are widely used as biomaterials for medical devices such as extracorporeal equipments. However, there is often conflicting evidence about their supposed cell-and histocompatibility. Macrophages could mediate silicone-induced adverse responses such as foreign body reaction and fibrous encapsulation. The polarization behaviour of macrophages could determine the clinical outcome after implantation of biomaterials. Induction of classically activated macrophages (CAM) may induce and support uncontrolled inflammatory responses and undesired material degradation. In contrast, polarization into alternatively activated macrophages (AAM) is assumed to support healing processes and implant integration. This study compared the interaction of non-polarized macrophages (M0), CAM, and AAM with commercially available tissue culture polystyrene (TCP) and a medical grade silicone-based biomaterial, regarding the secretion of inflammatory mediators such as cytokines and chemokines. Firstly, by using the Limulus amoebocyte lysate (LAL) test the silicone films were shown to be free of soluble endotoxins, which is the prerequisite to investigate their interaction with primary immune cells. Primary human monocyte-derived macrophages (M0) were polarized into CAM and AAM by addition of suitable differentiation factors. These macrophage subsets were incubated on the materials for 24 hours and their viability and cytokine secretion was assessed. In comparison to TCP, cell adhesion was lower on silicone after 24 hours for all three macrophage subsets. However, compared to TCP, silicone induced higher levels of certain inflammatory and chemotactic cytokines in M0, CAM, and AAM macrophage subsets. Conclusively, it was shown that silicone has the ability to induce a pro-inflammatory state to different magnitudes dependent on the macrophage subsets. This priming of the macrophage phenotype by silicone could explain the incidence of severe foreign body complications observed in vivo. KW - Biomaterials KW - silicone KW - macrophage subsets KW - cytokines/chemokines Y1 - 2015 U6 - https://doi.org/10.3233/CH-151991 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 119 EP - 133 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Going Beyond Compromises in Multifunctionality of Biomaterials JF - Advanced healthcare materials Y1 - 2015 U6 - https://doi.org/10.1002/adhm.201400724 SN - 2192-2640 SN - 2192-2659 VL - 4 IS - 5 SP - 642 EP - 645 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zhang, Quanchao A1 - Sauter, Tilman A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying JF - Macromolecular materials and engineering N2 - Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C. KW - biomaterials KW - microparticles KW - processing KW - stimuli-sensitive polymers KW - shape-memory effect Y1 - 2015 U6 - https://doi.org/10.1002/mame.201400267 SN - 1438-7492 SN - 1439-2054 VL - 300 IS - 5 SP - 522 EP - 530 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Saatchi, Mersa A1 - Behl, Marc A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Copolymer Networks From Oligo(epsilon-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature JF - Macromolecular rapid communications N2 - Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (T-m) of the actuating oligo(epsilon-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above T-m,T-offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad T(m)s from 2 degrees C to 50 degrees C and from -10 degrees C to 37 degrees C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 degrees C and 37 degrees C. In this way, the application spectrum of the rbSME can be extended to biomedical applications. KW - body temperature KW - broad melting temperature range KW - orientational memory KW - reversible bidirectional shape-memory polymer KW - copolymer networks Y1 - 2015 U6 - https://doi.org/10.1002/marc.201400729 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 10 SP - 880 EP - 884 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer JF - eXPRESS polymer letters N2 - A multiblock copolymer termed as PCL-PIBMD, consisting of crystallizable poly(epsilon-caprolactone) (PCL) segments and crystallizable poly(3S-isobutyl-morpholine-2,5-dione) (PIBMD) segments, has been reported as a material showing a thermally-induced shape-memory effect. While PIBMD crystalline domains act as netpoints to determine the permanent shape, both PCL crystalline domains and PIBMD amorphous domains, which have similar transition temperatures (T-trans) can act as switching domains. In this work, the influence of the deformation temperature (T-deform = 50 or 20 degrees C), which was above or below T-trans, on the structural changes of PCL-PIBMD during uniaxial deformation and the shapememory properties were investigated. Furthermore, the relative contribution of crystalline PCL and PIBMD amorphous phases to the fixation of the temporary shape were distinguished by a toluene vapor treatment approach. The results indicated that at 50 degrees C, both PCL and PIBMD amorphous phases can be orientated during deformation, resulting in thermally-induced crystals of PCL domains and joint contribution to the switching domains. In contrast at 20 degrees C, the temporary shape was mainly fixed by PCL crystals generated via strain-induced crystallization. KW - biodegradable polymers KW - shape-memory polymer KW - multiblock copolymer KW - polydepsipeptide Y1 - 2015 U6 - https://doi.org/10.3144/expresspolymlett.2015.58 SN - 1788-618X VL - 9 IS - 7 SP - 624 EP - 635 PB - Budapest University of Technology and Economics, Department of Polymer Engineering CY - Budapest ER - TY - JOUR A1 - Federico, Stefania A1 - Pierce, Benjamin F. A1 - Piluso, Susanna A1 - Wischke, Christian A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine. KW - biomaterials KW - collagen KW - gels KW - peptides KW - protein-protein interactions Y1 - 2015 U6 - https://doi.org/10.1002/anie.201505227 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 37 SP - 10980 EP - 10984 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sauter, Tilman A1 - Geiger, Brett A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Encasement of metallic cardiovascular stents with endothelial cell-selective copolyetheresterurethane microfibers JF - Polymers for advanced technologies N2 - Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 mu m were achieved via electrospinning with 1,1,1,3,3,3-hexafluoro-2-propanol (HFP)-based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 mu m comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti-proliferative drugs. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - multifunctional polymers KW - stent coatings KW - electrospinning KW - biomaterials KW - degradable polymers Y1 - 2015 U6 - https://doi.org/10.1002/pat.3583 SN - 1042-7147 SN - 1099-1581 VL - 26 IS - 10 SP - 1209 EP - 1216 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Richau, Klaus A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Influence of Diurethane Linkers on the Langmuir Layer Behavior of Oligo[(rac-lactide)-co-glycolide]-based Polyesterurethanes JF - Macromolecular rapid communications N2 - Three oligo[(rac-lactide)-co-glycolide] based polyesterurethanes (OLGA-PUs) containing different diurethane linkers are investigated by the Langmuir monolayer technique and compared to poly[(rac-lactide)-co-glycolide] (PLGA) to elucidate the influence of the diurethane junction units on hydrophilicity and packing motifs of these polymers at the air-water interface. The presence of diurethane linkers does not manifest itself in the Langmuir layer behavior both in compression and expansion experiments when monomolecular films of OLGA-PUs are spread on the water surface. However, the linker retard the evolution of morphological structures at intermediate compression level under isobaric conditions (with a surface pressure greater than 11 mN m(-1)) compared to the PLGA, independent on the chemical structure of the diurethane moiety. The layer thicknesses of both OLGA-PU and PLGA films decrease in the high compression state with decreasing surface pressure, as deduced from ellipsometric data. All films must be described with the effective medium approximation as water swollen layers. KW - Brewster angle microscopy KW - Langmuir monolayer KW - poly[(rac-lactide)-co-glycolide] KW - polyesterurethanes KW - spectroscopic ellipsometry Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500316 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1910 EP - 1915 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vukicevic, Radovan A1 - Neffe, Axel T. A1 - Luetzow, Karola A1 - Pierce, Benjamin F. A1 - Lendlein, Andreas T1 - Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release JF - Macromolecular rapid communications N2 - Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations. KW - ultrasound KW - polymers KW - microgels KW - lipase release KW - controlled release KW - thermoresponsive polymers KW - biomaterials Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500311 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1891 EP - 1896 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wang, Li A1 - Baudis, Stefan A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization JF - Pure and applied chemistry : official journal of the International Union of Pure and Applied Chemistry N2 - A versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)(2) as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto-and thermo-sensitive polymer networks were prepared via two subsequent surfaceinitiated ring-opening polymerizations (ROPs) with omega-pentadecalactone and e-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85 degrees C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and H-1-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(omega-pentadecalactone) (OPDL) and oligo(e-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few.-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)(2) was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP. KW - degradable polyester KW - magnetic nanoparticles KW - nanoparticle characterization KW - NICE-2014 KW - ring opening polymerization KW - surface functionalization Y1 - 2015 U6 - https://doi.org/10.1515/pac-2015-0607 SN - 0033-4545 SN - 1365-3075 VL - 87 IS - 11-12 SP - 1085 EP - 1097 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Nöchel, Ulrich A1 - Reddy, Chaganti Srinivasa A1 - Wang, Ke A1 - Cui, Jing A1 - Zizak, Ivo A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers JF - Journal of Materials Chemistry A, Materials for energy and sustainability N2 - Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 °C related to a broad melting transition (∼100 °C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (Tdeform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 °C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low Tdeform (<50 °C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units. Y1 - 2015 U6 - https://doi.org/10.1039/c4ta06586g SN - 2050-7488 SN - 2050-7496 VL - 16 IS - 3 SP - 8284 EP - 8293 PB - Royal Society of Chemistry CY - Cambridge ER -