TY - JOUR A1 - Chen, Xiaomin A1 - Baldermann, Susanne A1 - Cao, Shuyan A1 - Lu, Yao A1 - Liu, Caixia A1 - Hirata, Hiroshi A1 - Watanabe, Naoharu T1 - Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget' JF - Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology N2 - 2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns. (C) 2014 Elsevier Masson SAS. All rights reserved. KW - 2-Phenylethanol KW - 3,5-Dimethoxytoluene KW - Floral scent compound KW - Rosa x level Y1 - 2015 U6 - https://doi.org/10.1016/j.plaphy.2014.12.016 SN - 0981-9428 VL - 87 SP - 109 EP - 114 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Zhou, Ying A1 - Zhang, Ling A1 - Gui, Jiadong A1 - Dong, Fang A1 - Cheng, Sihua A1 - Mei, Xin A1 - Zhang, Linyun A1 - Li, Yongqing A1 - Su, Xinguo A1 - Baldermann, Susanne A1 - Watanabe, Naoharu A1 - Yang, Ziyin T1 - Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis JF - Plant molecular biology reporter N2 - Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP. KW - Camellia sinensis KW - 1-Phenylethanol KW - Phenylpropanoids KW - Short chain dehydrogenase KW - Volatile compound Y1 - 2015 U6 - https://doi.org/10.1007/s11105-014-0751-z SN - 0735-9640 SN - 1572-9818 VL - 33 IS - 2 SP - 253 EP - 263 PB - Springer CY - New York ER - TY - JOUR A1 - Errard, Audrey A1 - Ulrichs, Christian A1 - Kuehne, Stefan A1 - Mewis, Inga A1 - Drungowski, Mario A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Single- versus multiple-pest infestation affects differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig') JF - Journal of agricultural and food chemistry : a publication of the American Chemical Society N2 - Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single-versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and beta-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism. KW - spider mites KW - aphids KW - terpenoids KW - carotenoids KW - plant volatiles KW - systemic response KW - Solanaceae KW - Solanum lycopersicum Y1 - 2015 U6 - https://doi.org/10.1021/acs.jafc.5b03884 SN - 0021-8561 SN - 1520-5118 VL - 63 IS - 46 SP - 10103 EP - 10111 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Errard, Audrey A1 - Baldermann, Susanne A1 - Kühne, Stefan A1 - Mewis, Inga A1 - Peterkin, John A1 - Ulrichs, Christian T1 - Interspecific Interactions Affect Pests Differently JF - Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz N2 - Spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) and aphids, Myzus persicae (Sulzer) (Pterygota: Aphididae) share many host-plants, similar abiotic conditions and are world-wide distributed therefore, they often occur simultaneously in crops. However, the effects of interspecific interactions on the biology of these pests were poorly investigated. To test if they perform differently under intra- versus inter-specific interactions, host-plant acceptance, fecundity, survival, the total number of individuals and the rate of increase in the number of individuals were studied doing non-choice bioassays under laboratory conditions with leaf discs of tomato (Solanum lycopersicum L. 'Ailsa Craig'), pak choi (Brassica rapa L. var. chinensis 'Black Behi') and bean (Phaseolus vulgaris L. 'Saxa'). Alone, the pests differently accepted the host-plants. The acceptance of pak choi by spider mites was lower under interspecific interactions and higher on tomato for aphids. In general, spider mites' performance decreased when aphids were present; the fecundity, the number of individuals and the rate of increase being significantly lower on pak choi and bean. In contrast, aphids produced more offspring in the presence of spider mites, leading to a higher rate of increase in aphids individuals on tomato and pak choi. Thus, pest' responses to interspecific interactions is species-specific. KW - Tetranychus urticae KW - Myzus persicae KW - Multiple herbivory KW - Pest-pest interaction KW - Host-plant suitability KW - Pest infestation KW - Fabaceae KW - Solanaceae KW - Brassicaceae Y1 - 2015 U6 - https://doi.org/10.1007/s10343-015-0349-x SN - 0367-4223 SN - 1439-0345 VL - 67 IS - 4 SP - 183 EP - 190 PB - Springer CY - New York ER -