TY - JOUR A1 - Koc, Julian A1 - Simovich, Tomer A1 - Schönemann, Eric A1 - Chilkoti, Ashutosh A1 - Gardner, Harrison A1 - Swain, Geoffrey W. A1 - Hunsucker, Kelli A1 - Laschewsky, André A1 - Rosenhahn, Axel T1 - Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment JF - Biofouling : the journal of bioadhesion and biofilm research N2 - Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance. KW - hydrogel KW - field test KW - fouling release KW - marine biofouling KW - sediment Y1 - 2019 U6 - https://doi.org/10.1080/08927014.2019.1611790 SN - 0892-7014 SN - 1029-2454 VL - 35 IS - 4 SP - 454 EP - 462 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Schuck, Götz A1 - Lehmann, Frederike A1 - Ollivier, Jacques A1 - Mutka, Hannu A1 - Schorr, Susan T1 - Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI(3-x)Cl(x) perovskites JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Hybrid halide perovskites, MAPbI(3), MAPbI(2.94)Cl(0.0)6, and MAPbCl(3) (MA, methylammonium), were investigated using inelastic and quasielastic neutron scattering (QENS) with the aim of elucidating the impact of chloride substitution on the rotational dynamics of MA. In this context, we discuss the influence of the inelastic neutron scattering caused by low-energy phonons on QENS, resulting from the MA rotational dynamics in MAPbI(3-x)Cl(x). Through a comparative temperature-dependent QENS investigation with different energy resolutions, which allow a wide Fourier time window, we achieved a consistent description of the influence of chlorine substitution in MAPbI(3) on the MA dynamics. Our results showed that chlorine substitution in the low-temperature orthorhombic phase leads to a weakening of the hydrogen bridge bonds, since the characteristic relaxation times of C-3 rotation at 70 K in MAPbCl(3) (135 ps) and MAPbI(2.94)Cl(0.06) (485 ps) are much shorter than that in MAPbI(3) (1635 ps). For the orthorhombic phase, we obtained the activitin energies from the temperature-dependent characteristic relaxation times tau (c3). by Arrhenius fits, indicating lower values of E-a for MAPbCl(3) and MAPbI(2.94)Cl(0.06) compared to that of MAPbI(3). We also performed QENS analyses at 190 K for all three samples. Here, we observed that MAPbCI(3) shows slower MA rotational dynamics than MAPbI(3) in the disordered structure. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b01238 SN - 1932-7447 VL - 123 IS - 18 SP - 11436 EP - 11446 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Günther, Erika A1 - Klauß, André A1 - Toro-Nahuelpan, Mauricio A1 - Schüler, Dirk A1 - Hille, Carsten A1 - Faivre, Damien T1 - The in vivo mechanics of the magnetotactic backbone as revealed by correlative FLIM-FRET and STED microscopy JF - Scientific reports N2 - Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Forster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-55804-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schultze, Christiane A1 - Schmidt, Bernd T1 - Functionalized Benzofurans via Microwave-Promoted Tandem Claisen-Rearrangement/5-endo-dig Cyclization JF - Journal of heterocyclic chemistry N2 - Ortho-allyloxy alkinyl benzenes undergo, upon microwave irradiation in dimethylformamide, a tandem sequence of Claisen-rearrangement and 5-endo-dig cyclization to furnish 7-allyl-substituted benzofurans. With terminal alkynes, chroman-4-ones and enaminoketones become the main products. A mechanistic proposal for this observation relies on a reaction of the starting material with the solvent dimethylformamide under the microwave conditions. Y1 - 2019 U6 - https://doi.org/10.1002/jhet.3671 SN - 0022-152X SN - 1943-5193 VL - 56 IS - 9 SP - 2619 EP - 2629 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Heil, Tobias A1 - Tian, Zhihong A1 - Schmidt, Johannes A1 - Wang, Gui-Chang A1 - Oschatz, Martin T1 - Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Unraveling the effect of transition-metal doping on the energy storage properties of bimetallic sulfides remains a grand challenge. Herein, we construct bimetallic sulfide nanosheets and hence deliberately introduce transition-metal doping domains on their surface. The resulting materials show not only an enhanced density of states near the Fermi level but also partially delocalized charge as shown by density functional theory (DFT) calculations. Fe-doped NiCo2S4 nanosheets wrapped on N,S-doped ordered mesoporous carbon (Fe-NiCo2S4@N,S-CMK-3) are prepared, which show an enhanced specific capacitance of 197.8 F g(-1) in ionic liquid-based supercapacitors at a scan rate of 2 mV s(-1). This is significantly higher as compared to the capacitance of 155.2 and 135.9 F g(-1) of non-iron-doped NiCo2S4@N,S-CMK and Fe-NiCo2S4@CMK-3 electrodes, respectively. This result arises from the enhanced ionic liquid polarization effect and transportation ability from the Fe-NiCo2S4 surface and N,S-CMK-3 structure. Furthermore, the importance of matching multi-dimensional structures and ionic liquid ion sizes in the fabrication of asymmetric supercapacitors (ASCs) is demonstrated. As a result, the ASC device exhibits a high energy density of 107.5 W h kg(-1) at a power density of 100 W kg(-1) in a working-voltage window of 4 V when using Fe-NiCo2S4@N,S-CMK-3 and N,S-CMK-3 as positive and negative electrodes, respectively. This work puts forward a new direction to design supercapacitor composite electrodes for efficient ionic liquid coupling. Y1 - 2019 U6 - https://doi.org/10.1039/c9ta06250e SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19342 EP - 19347 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Shou, Keyun A1 - Bremer, Anne A1 - Rindfleisch, Tobias A1 - Knox-Brown, Patrick A1 - Hirai, Mitsuhiro A1 - Rekas, Agata A1 - Garvey, Christopher J. A1 - Hincha, Dirk K. A1 - Stadler, Andreas M. A1 - Thalhammer, Anja T1 - Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp01768b SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 34 SP - 18727 EP - 18740 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Lendlein, Andreas A1 - Balk, Maria A1 - Tarazona, Natalia A. A1 - Gould, Oliver E. C. T1 - Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01074 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3627 EP - 3640 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kuroki, Agnes A1 - Tchoupa, Arnaud Kengmo A1 - Hartlieb, Matthias A1 - Peltier, Raoul A1 - Locock, Katherine E. S. A1 - Unnikrishnan, Meera A1 - Perrier, Sebastien T1 - Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship JF - Biomaterials : biomaterials reviews online N2 - Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy. KW - Antimicrobial KW - Intracellular bacteria KW - Block copolymers KW - RAFT polymerization Y1 - 2019 U6 - https://doi.org/10.1016/j.biomaterials.2019.119249 SN - 0142-9612 SN - 1878-5905 VL - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hwang, Jongkook A1 - Walczak, Ralf A1 - Oschatz, Martin A1 - Tarakina, Nadezda A1 - Schmidt, Bernhard V. K. J. T1 - Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals JF - Small N2 - Synthesis of 3D flower-like zinc-nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N-doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower-like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550-1000 degrees C) and the removal method of in the situ-generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970-1605 m(2) g(-1)), nitrogen content (3.4-14.1 at%), pore volume (0.95-2.19 cm(3) g(-1)), as well as pore diameter and structures. The carbon flowers prepared at 550 degrees C show high CO2/N-2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal-organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications. KW - 3D flower superstructures KW - hierarchically porous carbon KW - metal-organic mesocrystals KW - thermal transformation mechanism Y1 - 2019 U6 - https://doi.org/10.1002/smll.201901986 SN - 1613-6810 SN - 1613-6829 VL - 15 IS - 37 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Schürmann, Robin Mathis A1 - Pacholski, Claudia T1 - One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance JF - Frontiers in chemistry N2 - Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot. KW - porous silicon KW - interferometry KW - gold nanostructures KW - surface plasmon resonance KW - optical sensor Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00593 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Qin, Qing A1 - Zhao, Yun A1 - Schmallegger, Max A1 - Heil, Tobias A1 - Schmidt, Johannes A1 - Walczak, Ralf A1 - Gescheidt-Demner, Georg A1 - Jiao, Haijun A1 - Oschatz, Martin T1 - Enhanced Electrocatalytic N-2 Reduction via Partial Anion Substitution in Titanium Oxide-Carbon Composites JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - The electrochemical conversion of N-2 at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH3) production. Considering the chemical inertness of N-2, rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO2/C (C-TixOy/C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 %, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-TixOy. This binding motive is found to be energetically more favorable for N-2 activation compared to the non-substituted OVs in TiO2. This work elucidates that electrochemical N-2 reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides. KW - ammonia synthesis KW - anion substitution KW - MOF-derived catalysts KW - N-2 fixation KW - non-noble metal catalysts Y1 - 2019 U6 - https://doi.org/10.1002/anie.201906056 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 37 SP - 13101 EP - 13106 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Aloni, Sapir Shekef A1 - Perovic, Milena A1 - Weitman, Michal A1 - Cohen, Reut A1 - Oschatz, Martin A1 - Mastai, Yitzhak T1 - Amino acid-based ionic liquids as precursors for the synthesis of chiral nanoporous carbons JF - Nanoscale Advances N2 - The synthesis of chiral nanoporous carbons based on chiral ionic liquids (CILs) of amino acids as precursors is described. Such unique precursors for the carbonization of CILs yield chiral carbonaceous materials with high surface area (approximate to 620 m(2) g(-1)). The enantioselectivities of the porous carbons are examined by advanced techniques such as selective adsorption of enantiomers using cyclic voltammetry, isothermal titration calorimetry, and mass spectrometry. These techniques demonstrate the chiral nature and high enantioselectivity of the chiral carbon materials. Overall, we believe that the novel approach presented here can contribute significantly to the development of new chiral carbon materials that will find important applications in chiral chemistry, such as in chiral catalysis and separation and in chiral sensors. From a scientific point of view, the approach and results reported here can significantly deepen our understanding of chirality at the nanoscale and of the structure and nature of chiral nonporous materials and surfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9na00520j SN - 2516-0230 VL - 1 IS - 12 SP - 4981 EP - 4988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Guo, Wen-Bin A1 - Tang, Ying-Ying A1 - Xu, Jin-Qiu A1 - He, Zhang-Zhen T1 - Observation of Spin Relaxation in a Vanadate Chloride with Quasi-One-Dimensional Linear Chain JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - A new cobalt(II) vanadate chloride, Pb2Co(OH)(V2O7)Cl, has been synthesized under mild hydrothermal conditions. It contains quasi-one-dimensional (1D) linear chains built by edge-sharing of (CoO6)-O-II octahedra. The cobalt(II) oxide chains are further interconnected by (V2O7)(4-) dimers into a three-dimensional (3D) anionic framework with Pb2+ and Cl- ions residing in Co4V8 12-member ring tunnels. The intrachain Co center dot center dot center dot Co distance is 3.041 angstrom, while the interchain distances are 8.742 and 9.256 angstrom. Magnetic measurements suggest the ferromagnetic intrachain and the antiferromagnetic interchain interactions with a specific value of J(intra)/J(inter) = 1.7 x 10(3). Zero-field heat capacity demonstrates the magnetic long-range ordering at 5.5 K. Alternating current (AC) magnetic susceptibility under zero external direct current (DC) fields displays two slow magnetic relaxations at low temperatures, giving characteristic relaxations (tau(0)) of 1.2(3) x 10(-12) and 1.9(4) x 10(-10) s with effective energy barriers (Delta(r)) of 76.1(2) and 48.4(5) K. The energy barrier between the spin up and spin-down states can be ascribed to the ferromagnetic spin chain and the Ising-like magnetic anisotropy in Pb2Co(OH)(V2O7)Cl. Y1 - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01839 SN - 1528-7483 SN - 1528-7505 VL - 19 IS - 4 SP - 2228 EP - 2234 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mameri, Fatima A1 - Koutchoukali, Ouahiba A1 - Koutchoukali, Mohamed Salah A1 - Hartwig, Anne A1 - Nemdili, Leila A1 - Ulrich, Joachim T1 - Optimum operating conditions for manufacturing ibuprofen tablets coated with polyethylene glycol by melt crystallization process JF - Journal of Thermal Analysis and Calorimetry N2 - The aim of this work is to apply the melt crystallization technology to manufacture ibuprofen tablets coated with polyethylene glycol in a single step. This technology, based on a pastillation process, allows in situ separation between two components (active ingredient and coating material). The design and application of this technique depend on the thermo-physical properties of the substances used, as well as on the existence of a eutectic point in the phase diagram. To evaluate the prerequisite conditions, first, DSC curves, allowing the construction of the phase diagram of the binary system, were investigated and the eutectic point was determined (30 mass% ibuprofen, 52 degrees C). Then, the stability of the selected mixture (10:90 mass% of ibuprofen, PEG6000) was studied by thermogravimetric analysis. Finally, the coating quality was investigated under different operating conditions including viscosity, cooling plate temperature, the power of ultrasound and seeding. This parametric study showed that seeding with PEG6000 is necessary to obtain a hemispherical pastille shape, a suitable separation and a pure and thick coating layer. In addition to the optimization of operating conditions of the in situ coating process, it was possible to determine the optimum viscosity and the cooling plate temperature (271.77 m Pa s, 25 degrees C) to obtain a uniform and crystalline coating. During the deposition of molten drops on the cooled surface, the progression of crystal growth was monitored online by optical microscopy. According to the good separation achieved and to the purity and thickness of the microscopic cross-sectional material, the in situ coating process is conceivable for the production of PEG6000-coated ibuprofen tablets. KW - Ibuprofen KW - PEG6000 KW - Eutectic mixture KW - In situ coating KW - Melt crystallization KW - Pastillation Y1 - 2019 U6 - https://doi.org/10.1007/s10973-018-7667-z SN - 1388-6150 SN - 1588-2926 VL - 136 IS - 2 SP - 833 EP - 842 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kosmella, Sabine A1 - Klemke, Bastian A1 - Häusler, Ines A1 - Koetz, Joachim T1 - From gel-like Pickering emulsions to highly ordered superparamagnetic magnetite aggregates with embedded gold nanoparticles JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - Pickering emulsions with two types of nanoparticles, i.e., superparamagnetic magnetite nanoparticles dispersed in n-hexane and gold nanoparticles dispersed in water, were formed by rigorous mixing in presence of surface active polymeric surfactants. Monodisperse magnetite nanoparticles with a mean particle size of 4 nm were obtained by a microwave-assisted synthesis in n-hexane in presence of oleic acid, and gold nanoparticles were produced in aqueous solution in presence of the hyperbranched poly(ethyleneimine) (PEI) or sodium citrate as reducing and stabilizing agent. After mixing the prepared nanoparticle dispersions in presence of the Pluronics an intermediate gel-like phase is formed. The Pickering emulsion droplets in the intermediate phase are stabilized by both types of nanoparticles, as to be seen by cryo-SEM micrographs. After separating, solvent evaporation and redispersion in water highly ordered Pluronic-stabilized superparamagnetic magnetite nanoparticle aggregates with embedded gold nanoparticles can be obtained. KW - Pickering emulsions KW - Pluronics KW - Magnetite and gold nanoparticles KW - Ring tensiometry KW - Cryo-SEM KW - HRTEM KW - Magnetization measurements Y1 - 2019 U6 - https://doi.org/10.1016/j.colsurfa.2019.03.017 SN - 0927-7757 SN - 1873-4359 VL - 570 SP - 331 EP - 338 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Otte, Fabian A1 - Schmidt, Bernd T1 - Matsuda-Heck Arylation of Glycals for the Stereoselective Synthesis of Aryl C-Glycosides JF - The journal of organic chemistry N2 - The methoxymethyl-protected glycal L-amicetal, synthesized de novo from L-ethyl lactate through tandem ring-closing metathesis-isomerization sequence, undergoes a highly trans-diastereoselective Heck-type coupling reaction with various arene diazonium salts to furnish 2,3-unsaturated aryl C-glycosides in moderate to excellent yields. The products can be further functionalized, e.g., by hydrogenation, epoxidation, or dihydroxylation to furnish 2,3,6-tridesoxy, 2,3-anhydro-6-desoxy, or 6-desoxy aryl C-glycosides, respectively. The method was applied to the synthesis of an a-configured 6-desoxy-gliflozin derivative. Y1 - 2019 U6 - https://doi.org/10.1021/acs.joc.9b02410 SN - 0022-3263 SN - 1520-6904 VL - 84 IS - 22 SP - 14816 EP - 14829 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yuan, Jinkai A1 - Neri, Wilfrid A1 - Zakri, Cecile A1 - Merzeau, Pascal A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Poulin, Philippe T1 - Shape memory nanocomposite fibers for untethered high-energy microengines JF - Science N2 - Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw3722 SN - 0036-8075 SN - 1095-9203 VL - 365 IS - 6449 SP - 155 EP - 158 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Polley, Nabarun A1 - Basak, Supratim A1 - Hass, Roland A1 - Pacholski, Claudia T1 - Fiber optic plasmonic sensors BT - Providing sensitive biosensor platforms with minimal lab equipment JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 +/- 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors. KW - Surface plasmon resonance KW - Optical fiber KW - Bottom-up fabrication KW - Biosensor KW - 3D printed flow-cell Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2019.03.020 SN - 0956-5663 SN - 1873-4235 VL - 132 SP - 368 EP - 374 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Keller, Sebastian A1 - Wetterhorn, Karl M. A1 - Vecellio, Alison A1 - Seeger, Mark A1 - Rayment, Ivan A1 - Schubert, Torsten T1 - Structural and functional analysis of an l-serine O-phosphate decarboxylase involved in norcobamide biosynthesis JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Structural diversity of natural cobamides (Cbas, B12 vitamers) is limited to the nucleotide loop. The loop is connected to the cobalt‐containing corrin ring via an (R)‐1‐aminopropan‐2‐ol O‐2‐phosphate (AP‐P) linker moiety. AP‐P is produced by the l‐threonine O‐3‐phosphate (l‐Thr‐P) decarboxylase CobD. Here, the CobD homolog SMUL_1544 of the organohalide‐respiring epsilonproteobacterium Sulfurospirillum multivorans was characterized as a decarboxylase that produces ethanolamine O‐phosphate (EA‐P) from l‐serine O‐phosphate (l‐Ser‐P). EA‐P is assumed to serve as precursor of the linker moiety of norcobamides that function as cofactors in the respiratory reductive dehalogenase. SMUL_1544 (SmCobD) is a pyridoxal‐5′‐phosphate (PLP)‐containing enzyme. The structural analysis of the SmCobD apoprotein combined with the characterization of truncated mutant proteins uncovered a role of the SmCobD N‐terminus in efficient l‐Ser‐P conversion. KW - cobamides KW - ethanolamine phosphate KW - norcobamide biosynthesis KW - serine phosphate decarboxylase Y1 - 2019 U6 - https://doi.org/10.1002/1873-3468.13543 SN - 0014-5793 SN - 1873-3468 VL - 593 IS - 21 SP - 3040 EP - 3053 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hartlieb, Matthias A1 - Catrouillet, Sylvain A1 - Kuroki, Agnes A1 - Sanchez-Cano, Carlos A1 - Peltier, Raoul A1 - Perrier, Sebastien T1 - Stimuli-responsive membrane activity of cyclic-peptide-polymer conjugates JF - Chemical science N2 - Cyclic peptide nanotubes (CPNT) consisting of an even number of amino acids with an alternating chirality are highly interesting materials in a biomedical context due to their ability to insert themselves into cellular membranes. However, unwanted unspecific interactions between CPNT and non-targeted cell membranes are a major drawback. To solve this issue we have synthetized a series of CPNT-polymer conjugates with a cleavable covalent connection between macromolecule and peptide. As a result, the polymers form a stabilizing and shielding shell around the nanotube that can be cleaved on demand to generate membrane active CPNT from non-active conjugates. This approach enables us to control the stacking and lateral aggregation of these materials, thus leading to stimuli responsive membrane activity. Moreover, upon activation, the systems can be adjusted to form nanotubes with an increased length instead of aggregates. We were able to study the dynamics of these systems in detail and prove the concept of stimuli responsive membrane interaction using CPNT-polymer conjugates to permeabilize liposomes as well as mammalian cell membranes. Y1 - 2019 U6 - https://doi.org/10.1039/c9sc00756c SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 21 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Theoretical insights into the effect of solvents on the [4+2] cycloaddition of singlet oxygen to substituted anthracenes BT - A change from a stepwise process to a concerted process JF - Journal of physical organic chemistry N2 - The [4 + 2] cycloadditions of singlet oxygen to 9,10-diphenylanthracene (1) and the meta and para isomers of 9,10-dipyridylanthracene (2m/p) and 9,10-methoxyphenylanthracene (3m/p) have been studied by density functional calculations in the gas phase at the UB3LYP/6-31G* level and for the first time in solvents at the conductor-like polarizable continuum model (CPCM) UM062X/6-31G* level. The differences in calculated transition state (TS) energies derived from this method are in line with experimentally observed reactivity orders in solution. For the gas-phase reaction, the first TS of the stepwise pathway (TS1) has biradical character, and its energy lies below the energy of the TS of the concerted path (TSconc). In contrast, in the solvent acetonitrile, TS1 resembles a zwitterion and lies significantly higher than the TSconc. Thus, a concerted mechanism applies in solvents, and the energy gap between the TS of the two processes decreases with decreasing polarity. A change from a pyridyl against a methoxyphenyl substituent in the para position causes a maximal reduction of the activation barrier by approximately 1.7 kcal/mol, resulting in a fivefold increased reactivity. KW - anthracenes KW - DFT calculations KW - endoperoxides KW - photooxygenation KW - singlet oxygen KW - solvent effect Y1 - 2019 U6 - https://doi.org/10.1002/poc.3951 SN - 0894-3230 SN - 1099-1395 VL - 32 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zude-Sasse, Manuela A1 - Hashim, Norhashila A1 - Hass, Roland A1 - Polley, Nabarun A1 - Regen, Christian T1 - Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging JF - Postharvest Biology and Technology N2 - Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell’s diffusion theory either calculating μa [cm−1] and μs’ [cm−1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs’, non-destructively. Setting μs’ according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7% in comparison to fitting μs’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs’ and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs’. KW - Absorption KW - European pear KW - Fruit quality KW - Phantoms KW - Reduced scattering coefficient KW - Scattering KW - Spatially resolved spectroscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.postharvbio.2019.04.002 SN - 0925-5214 SN - 1873-2356 VL - 153 SP - 161 EP - 168 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wolf, Thomas J. A. A1 - Sanchez, David M. A1 - Yang, J. A1 - Parrish, R. M. A1 - Nunes, J. P. F. A1 - Centurion, M. A1 - Coffee, R. A1 - Cryan, J. P. A1 - Gühr, Markus A1 - Hegazy, Kareem A1 - Kirrander, Adam A1 - Li, R. K. A1 - Ruddock, J. A1 - Shen, Xiaozhe A1 - Vecchione, T. A1 - Weathersby, S. P. A1 - Weber, Peter M. A1 - Wilkin, K. A1 - Yong, Haiwang A1 - Zheng, Q. A1 - Wang, X. J. A1 - Minitti, Michael P. A1 - Martinez, Todd J. T1 - The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction JF - Nature chemistry N2 - The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subangstrom length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale. KW - Organic chemistry KW - Photochemistry KW - Physical chemistry KW - Theoretical chemistry Y1 - 2019 U6 - https://doi.org/10.1038/s41557-019-0252-7 SN - 1755-4330 SN - 1755-4349 VL - 11 IS - 6 SP - 504 EP - 509 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sass, Stephan A1 - Stöcklein, Walter F. M. A1 - Klevesath, Anja A1 - Hurpin, Jeanne A1 - Menger, Marcus A1 - Hille, Carsten T1 - Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy JF - The analyst : the analytical journal of the Royal Society of Chemistry N2 - Anthracyclines like daunorubicin (DRN) and doxorubicin (DOX) play an undisputed key role in cancer treatment, but their chronic administration can cause severe side effects. For precise anthracycline analytical systems, aptamers are preferable recognition elements. Here, we describe the detailed characterisation of a single-stranded DNA aptamer DRN-10 and its truncated versions for DOX and DRN detection. Binding affinities were determined from surface plasmon resonance (SPR) and microscale thermophoresis (MST) and combined with conformational data from circular dichroism (CD). Both aptamers displayed similar nanomolar binding affinities to DRN and DOX, even though their rate constants differed as shown by SPR recordings. SPR kinetic data unravelled a two-state reaction model including a 1 : 1 binding and a subsequent conformational change of the binding complex. This model was supported by CD spectra. In addition, the dissociation constants determined with MST were always lower than that from SPR, and especially for the truncated aptamer they differed by two orders of magnitude. This most probably reflects the methodological difference, namely labelling for MST vs. immobilisation for SPR. From CD recordings, we suggested a specific G-quadruplex as structural basis for anthracycline binding. We concluded that the aptamer DRN-10 is a promising recognition element for anthracycline detection systems and further selected aptamers can be also characterised with the combined methodological approach presented here. Y1 - 2019 U6 - https://doi.org/10.1039/c9an01247h SN - 0003-2654 SN - 1364-5528 VL - 144 IS - 20 SP - 6064 EP - 6073 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Miedema, Piter S. A1 - Thielemann-Kühn, Nele A1 - Calafell, Irati Alonso A1 - Schüßler-Langeheine, Christian A1 - Beye, Martin T1 - Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M-2,M-3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M-2,M-3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (O-h) symmetry with a tetragonal parameter Ds of about -0.1 eV, very close to the Ds distortion from octahedral (O-h) symmetry parameter of -0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from O-h symmetry than the surface-near region in bulk NiO. Finally, the potential of M-2,M-3-edge RIXS for other investigations of strain on electronic structure is discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp03593a SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 38 SP - 21596 EP - 21602 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Preller, Tobias A1 - Runge-Borchert, Gundula A1 - Zellmer, Sabrina A1 - Menzel, Dirk A1 - Saein, Saeid Azimi A1 - Peters, Jan A1 - Raatz, Annika A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Garnweitner, Georg T1 - Particle-reinforced and functionalized hydrogels for SpineMan, a soft robotics application JF - Journal of materials science N2 - SpineMan is designed as a prototype of a soft robotic manipulator that is constructed of alternating hard and soft segments similar to the human spine. Implementing such soft segments allows to surpass the rigidity of conventional robots and ensures safer workspaces where humans and machines can work side by side with less stringent safety restrictions. Therefore, we used a hydrogel as viscoelastic material consisting of poly(vinyl alcohol) and borax. The mechanical properties of the hydrogel were tailored by embedding silica particles of various particles sizes as well as in different mass fractions. Increased mass contents as well as larger particle sizes led to strongly enhanced rigidity with a more than doubled storage modulus of the composite compared to the pure hydrogel. Furthermore, specific functionalities were induced by the incorporation of superparamagnetic Fe3O4 nanoparticles that can in principle be used for sensing robotic motion and detecting malfunctions. Therefore, we precisely adjusted the saturation magnetization of the soft segments using defined mass contents of the nanoparticles. To ensure long-time shape stability and prevention of atmospheric influences on the prepared composites, a silicone skin of specific shore hardness was used. The composites and the soft segments were characterized by oscillation measurements, cryo-SEM, bending tests and SQUID measurements, which give insights into the properties in the passive and in the moving state of SpineMan. The utilization of tailored composites led to highly flexible, reinforced and functional soft segments, which ensure stability, easy movability by springs of the shape memory alloy nitinol and prevention of total failure. Y1 - 2018 U6 - https://doi.org/10.1007/s10853-018-3106-6 SN - 0022-2461 SN - 1573-4803 VL - 54 IS - 5 SP - 4444 EP - 4456 PB - Springer CY - New York ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - El-Nagar, Gumaa A. A1 - Abouserie, Ahed A1 - Roth, Christina T1 - Silver-Iron Hierarchical Microflowers for Highly Efficient H2O2 Nonenzymatic Amperometric Detection JF - ACS sustainable chemistry & engineering N2 - This study addresses the fabrication of monodispersed iron-doped silver meso-hierarchical flower-like structures via a facile chemical procedure. The morphology of the obtained silver particles has been tuned by changing the concentration of the structure-directing agent (malonic acid). Ball-shaped silver particles were formed in the absence of malonic acid (MA), while silver particles with craspedia-globosa, chrysanthemum, and dahlia flower-like structures were obtained in the presence of 0.2, 0.5, and 1 mM malonic acid, respectively. The doping of these dahlia flower-like structures with trace amounts of iron (<= 5% Fe weight percent) led to the formation of globe-amaranth iron-doped microflowers (AgFeamaranth). The as-prepared AgFeamaranth exhibited better performance as a nonenzymatic H2O2 sensor compared to undoped silver particles as demonstrated by their higher catalytic activity and stability together with superior sensitivity (1350 mu M-1 cm(-2), 61 times higher) and lower detection limit (0.1 mu M). These enhancements are attributed to the AgFe unique flower-like structures and to the fact that the iron dopants provide a higher number of electroactive sites and reduce the charge transfer resistance of H2O2 reduction. Additionally, the good stability of AgFe is believed to originate from the faster detachment rate of the in situ-formed gas bubbles from their surfaces compared to undoped silver structures. KW - Nonenzymatic KW - H2O2 KW - Electrosensing KW - Nanostructures KW - Iron/silver microflowers Y1 - 2019 U6 - https://doi.org/10.1021/acssuschemeng.8b06182 SN - 2168-0485 VL - 7 IS - 4 SP - 4335 EP - 4342 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memo technology JF - MRS Communications N2 - Temperature-memory technology was utilized to generate flat substrates with a programmable stiffness pattern from cross-linked poly(ethylene-co-vinyl acetate) substrates with cylindrical microstructures. Programmed substrates were obtained by vertical compression at temperatures in the range from 60 to 100 degrees C and subsequent cooling, whereby a flat substrate was achieved by compression at 72 degrees C, as documented by scanning electron microscopy and atomic force microscopy (AFM). AFM nanoindentation experiments revealed that all programmed substrates exhibited the targeted stiffness pattern. The presented technology for generating polymeric substrates with programmable stiffness pattern should be attractive for applications such as touchpads. optical storage, or cell instructive substrates. Y1 - 2019 U6 - https://doi.org/10.1557/mrc.2019.24 SN - 2159-6859 SN - 2159-6867 VL - 9 IS - 1 SP - 181 EP - 188 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Laschewsky, André A1 - Rosenhahn, Axel T1 - Molecular design of zwitterionic polymer interfaces BT - searching for the difference JF - Langmuir N2 - The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants. Y1 - 2019 U6 - https://doi.org/10.1021/acs.langmuir.8b01789 SN - 0743-7463 VL - 35 IS - 5 SP - 1056 EP - 1071 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Tank, Steffen A1 - Jagerszki, Gyula A1 - Gyurcsanyi, Robert E. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. T1 - Bio-Electrosynthesis of Vectorially Imprinted Polymer Nanofilms for Cytochrome P450cam JF - ChemElectroChem N2 - A new approach for synthesizing a vectorially imprinted polymer (VIP) is presented for the microbial cytochrome P450cam enzyme. A surface attached binding motif of a natural reaction partner of the target protein, putidaredoxin (Pdx), is the anchor to the underlying transducer. The 15 amino acid peptide anchor, which stems from the largest continuous amino acid chain within the binding site of Pdx was modified: (i) internal cysteines were replaced by serines to prevent disulfide bond formation; (ii) 2 ethylene glycol units were attached to the N-terminus as a spacer region; and (iii) an N-terminal cysteine was added to allow the immobilization on the gold electrode surface. Immobilization on GCE was achieved via an N-(1-pyrenyl)maleimide (NPM) cross-linker. In this way oriented immobilization of P450cam was accomplished by binding it to a peptide-modified gold or glassy carbon electrode (GCE) prior to the electrosynthesis of a polymer nanofilm around the immobilized target. This VIP nanofilm enabled reversible oriented docking of P450cam as it is indicated by the catalytic oxygen reduction via direct electron transfer between the enzyme and the underlying electrode. Catalysis of oxygen reduction by P450cam bound to the VIP-modified GCE was used to measure rebinding to the VIP. The mild coupling of an oxidoreductase with the electrode may be appropriate for realizing electrode-driven substrate conversion by instable P450 enzymes without the need of NADPH co-factor. KW - cytochrome P450 KW - direct electron transfer KW - electropolymerization KW - molecularly imprinted polymers KW - protein imprinting Y1 - 2019 U6 - https://doi.org/10.1002/celc.201801851 SN - 2196-0216 VL - 6 IS - 6 SP - 1818 EP - 1823 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poghosyan, Armen H. A1 - Adamyan, Maksim P. A1 - Shahinyan, Aram A. A1 - Koetz, Joachim T1 - AOT Bilayer Adsorption on Gold Surfaces BT - A Molecular Dynamics Study JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - A molecular dynamics study was done to reveal the adsorption properties of sodium dioctyl sulfosuccinate (AOT) bilayers on gold Au(111) surfaces. Examining the rotational mobility of AOT molecules, we track that the correlation time of AOT molecules on the adsorbed layer is much higher. The data estimating the diffusive motion of AOT molecule show a substantially lower rate of diffusion (similar to 10(-10) cm(2)/s) in the adsorbed layers in comparison to other ones. The results show that an adsorbed layer is more rigid, whereas the outer layers undergo considerable lateral and vertical fluctuations. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcb.8b11471 SN - 1520-6106 VL - 123 IS - 4 SP - 948 EP - 953 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lendlein, Andreas A1 - Gould, Oliver E. C. T1 - Reprogrammable recovery and actuation behaviour of shape-memory polymers JF - Nature reviews. Materials N2 - Shape memory is the capability of a material to be deformed and fixed into a temporary shape. Recovery of the original shape can then be triggered only by an external stimulus. Shape-memory polymers are highly deformable materials that can be programmed to recover a memorized shape in response to a variety of environmental and spatially localized stimuli as a one-way effect. The shape-memory function can also be generated as a reversible effect enabling actuation behaviour through macroscale deformation and processing, specifically by dictating the macromolecular orientation of actuation units and of the skeleton structure of geometry-determining units in the polymers. Shape-memory polymers can be programmed and reprogrammed into arbitrary shapes. Both recovery and actuation behaviour are reprogrammable. In this Review, we outline the common basis and key differences between the two shape-memory behaviours of polymers in terms of mechanism, fabrication schemes and characterization methods. We discuss which combination of macromolecular architecture and macroscale processing is necessary for coordinated, decentralized and responsive physical behaviour. The extraction of relevant thermomechanical information is described, and design criteria are shown for microscale and macroscale morphologies to gain high levels of recovered or actuation strains as well as on-demand 2D-to-3D shape transformations. Finally, real-world applications and key future challenges are highlighted. Y1 - 2019 U6 - https://doi.org/10.1038/s41578-018-0078-8 SN - 2058-8437 VL - 4 IS - 2 SP - 116 EP - 133 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Reinthaler, Markus A1 - Johansson, Johan Backemo A1 - Braune, Steffen A1 - Al-Hindwan, Haitham Saleh Ali A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials. Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne. cm(-2)) and high (arterial shear stress: 22.2 dyne .cm(-2)) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined. Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend. Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions. Y1 - 2019 U6 - https://doi.org/10.3233/CH-189410 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 183 EP - 191 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Kroepfl, Nina A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja A1 - Kuehnelt, Doris T1 - Selenoneine and ergothioneine in human blood cells determined simultaneously by HPLC/ICP-QQQ-MS JF - Journal of Analytical Atomic Spectrometry N2 - The possible relevance to human health of selenoneine and its sulfur-analogue ergothioneine has generated interest in their quantitative determination in biological samples. To gain more insight into the similarities and differences of these two species, a method for their simultaneous quantitative determination in human blood cells using reversed-phase high performance liquid chromatography (RP-HPLC) coupled to inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS) is presented. Spectral interferences hampering the determination of sulfur and selenium by ICPMS are overcome by introducing oxygen to the reaction cell. To access selenoneine and ergothioneine in the complex blood matrix, lysis of the cells with cold water followed by cut-off filtration (3000 Da) is performed. Recoveries based on blood cells spiked with selenoneine and ergothioneine were between 80% and 85%. The standard deviation of the method was around 0.10 mg S per L for ergothioneine (corresponding to relative standard deviations (RSD) between 10-1% for ergothioneine concentrations of 1-10 mg S per L) and 0.25 g Se per L for selenoneine (RSDs of 25-2% for concentrations of 1-10 g Se per L). The method was applied to blood cell samples from three volunteers which showed selenoneine and ergothioneine concentrations in the range of 3.25 to 7.35 g Se per L and 0.86 to 6.44 mg S per L, respectively. The method is expected to be of wide use in future studies investigating the dietary uptake of selenoneine and ergothioneine and their relevance in human health. Y1 - 2018 U6 - https://doi.org/10.1039/c8ja00276b SN - 0267-9477 SN - 1364-5544 VL - 34 IS - 1 SP - 127 EP - 134 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kuhnla, A. A1 - Reinthaler, Markus A1 - Braune, Steffen A1 - Maier, A. A1 - Pindur, Gerhard A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3% +/- 3.3% to 10.9% +/- 5.9%). The maximum induced aggregation decreased with age for ristocetin (from 85.8% +/- 7.2% to 75.0% +/- 7.8%), ADP (from 88.5% +/- 4.6% to 64.8% +/- 7.3%) and collagen (from 89.5% +/- 3.0% to 64.0% +/- 4.0%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans. Y1 - 2019 U6 - https://doi.org/10.3233/CH-199006 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 425 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Riemer, Nastja A1 - Shipman, Michael A1 - Wessig, Pablo A1 - Schmidt, Bernd T1 - Iterative arylation of itaconimides with diazonium salts through electrophilic palladium catalysis BT - divergent beta-H-Elimination pathways in repetitive Matsuda-Heck reactions JF - The journal of organic chemistry N2 - N-Arylitaconimides, accessible from maleic anhydride, anilines, and paraformaldehyde, react with arene diazonium salts in Pd-catalyzed Matsuda-Heck arylation to the pharmacologically relevant E-configured 3-arylmethylidene pyrrolidine-2,5-diones (also known as arylmethylidene succinimides) through exo-selective beta-H-elimination. The coupling proceeds at ambient temperature with the simple and easy-to-handle precatalyst Pd-II-acetate under ligandand base-free conditions. Notable features are high isolated yields, regio- and stereoselectivities, and short reaction times. In a comparative investigation, aryl iodides, bromides, and triflates were shown to be inferior coupling reagents in this reaction. The 3-arylmethylidene pyrrolidine-2,5-diones undergo second Matsuda-Heck coupling, which proceeds via endo-selective beta-H-elimination to give diarylmethyl-substituted maleimides as coupling products. These products can also be accessed in one flask by sequential addition of different arene diazonium salts to the starting itaconimide. The potential of 3-arylmethylidene succinimides as photoswitches was tested. Upon irradiation of the E-isomer at 300 nm, partial isomerization to the Z-isomer (E/Z = 65:35 in the photostationary state) was observed. The isomerization was found to be nearly completely reversible by irradiating the mixture at 400 nm. Y1 - 2019 U6 - https://doi.org/10.1021/acs.joc.9b00627 SN - 0022-3263 VL - 84 IS - 9 SP - 5732 EP - 5746 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Omole, Ruth Anyango A1 - Moshi, Mainen Julius A1 - Heydenreich, Matthias A1 - Malebo, Hamisi Masanja A1 - Gathirwa, Jeremiah Waweru A1 - Ochieng, Sharon Alice A1 - Omosa, Leonida Kerubo A1 - Midiwo, Jacob Ogweno T1 - Two lignans derivatives and two fusicoccane diterpenoids from the whole plant of Hypoestes verticillaris (L.F.) Sol. Ex roem. & schult JF - Phytochemistry letters N2 - Bioassay-guided screening of Hypoestes verticillaris whole plant CH2Cl2: MeOH (1:1) extract for anti-plasmodial activity yielded four new compounds: two lignans 2, 6-dimethoxysavinin (1), 2,6-dimethoxy-(7E)-7,8-dehydroheliobuphthalmin (2); and two fusicoccane diterpenoids: 11(12)-epoxyhypoestenone (3) and 3(11)-epoxyhypoestenone (4). The chemical structures were determined using various spectroscopic techniques: UV-vis, IR, CD, 1D, 2D and MS. Two fractions (RAO-43B and RAO-43D) and the isolated compounds were tested for activity against CQ susceptible (D6) and resistant (W2) Plasmodium falciparum parasite strains, in vitro and the IC50 values determined. While the whole extract and some resultant fractions displayed moderate activity, the isolated compounds exhibited mild anti-plasmodial activity against the both strains ranging from IC50 value of 328 mu M in 1 to 93 mu M in 3 against W2 strain. KW - Fusicoccane diterpenes KW - Lignans KW - Hypoestes verticillaris KW - Anti-Plasmodial activity Y1 - 2019 U6 - https://doi.org/10.1016/j.phytol.2019.02.019 SN - 1874-3900 SN - 1876-7486 VL - 30 SP - 194 EP - 200 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Koch, Andreas A1 - Stamboliyska, Bistra A1 - Mikhova, Bozhana A1 - Breznica-Selmani, Pranvera A1 - Mladenovska, Kristina A1 - Popovski, Emil T1 - Calculations of C-13 NMR chemical shifts and F-C coupling constants of ciprofloxacin JF - Magnetic resonance in chemistry N2 - Ciprofloxacin is a widely used fluoroquinolone antibiotic. In this work, a comprehensive evaluation of MP2 and DFT with different functionals and basis sets was carried out to select the most suitable level of theory for the study of the NMR properties of ciprofloxacin. Their relative predictive capabilities were evaluated comparing the theoretically predicted and experimental spectral data. Our computational results indicated that in contrast to the solid state, the molecule of ciprofloxacin does not exist as a zwitterion in gaseous state. The results of the calculations of the chemical shifts most close to the experimental were obtained with B3LYP/aug-cc-pVDZ. The F-C coupling constants were calculated systematically with different DFT methods and several basis sets. In general, the calculations of the coupling constants with the BHandH computational method including the applied in this work 6-311++G**, EPRII, and EPRIII basis sets showed a good reproducibility of the experimental values of the coupling constants. KW - C-13 chemical shifts KW - ciprofloxacin KW - DFT calculations KW - F-C coupling constants KW - NMR Y1 - 2019 U6 - https://doi.org/10.1002/mrc.4827 SN - 0749-1581 SN - 1097-458X VL - 57 IS - 4 SP - 75 EP - 84 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Müller, Katharina A1 - Foerstendorf, Harald A1 - Steudtner, Robin A1 - Tsushima, Satoru A1 - Kumke, Michael Uwe A1 - Lefèvre, Grégory A1 - Rothe, Jörg A1 - Mason, Harris A1 - Szabó, Zoltán A1 - Yang, Ping A1 - Adam, Christian K. R. A1 - André, Rémi A1 - Brennenstuhl, Katlen A1 - Chiorescu, Ion A1 - Cho, Herman M. A1 - Creff, Gaëlle A1 - Coppin, Frédéric A1 - Dardenne, Kathy A1 - Den Auwer, Christophe A1 - Drobot, Björn A1 - Eidner, Sascha A1 - Hess, Nancy J. A1 - Kaden, Peter A1 - Kremleva, Alena A1 - Kretzschmar, Jerome A1 - Krüger, Sven A1 - Platts, James A. A1 - Panak, Petra A1 - Polly, Robert A1 - Powell, Brian A. A1 - Rabung, Thomas A1 - Redon, Roland A1 - Reiller, Pascal E. A1 - Rösch, Notker A1 - Rossberg, André A1 - Scheinost, Andreas C. A1 - Schimmelpfennig, Bernd A1 - Schreckenbach, Georg A1 - Skerencak-Frech, Andrej A1 - Sladkov, Vladimir A1 - Solari, Pier Lorenzo A1 - Wang, Zheming A1 - Washton, Nancy M. A1 - Zhang, Xiaobin T1 - Interdisciplinary Round-Robin Test on molecular spectroscopy of the U(VI) Acetate System JF - ACS omega / American Chemical Society N2 - A comprehensive molecular analysis of a simple aqueous complexing system. U(VI) acetate. selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry. Y1 - 2019 U6 - https://doi.org/10.1021/acsomega.9b00164 SN - 2470-1343 VL - 4 IS - 5 SP - 8167 EP - 8177 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Großkopf, Sören A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Mix, Andreas A1 - Hellweg, Thomas T1 - Shear-Induced Transformation of Polymer-Rich Lamellar Phases to Micron-Sized Vesicles JF - Langmuir N2 - In the present work, we study the shear-induced transformation of polymer-rich lamellar phases into vesicles. The evolution of vesicle size is studied by different scattering techniques, rheology, and microscopy methods. The lamellar phase found in the system D2O/o-xylene/Pluronic PE9400/C(8)TAB can be fully transformed to multilamellar vesicles (MLVs) by applying shear. The size of the MLVs is proportional to the inverse square root of the shear rate. Hence, the polymer based quaternary system behaves similar to lamellar phases based on small surfactant molecules. Additionally, we found a growth effect leading to a size increase of the vesicles after shearing was stopped. Y1 - 2019 U6 - https://doi.org/10.1021/acs.langmuir.8602786 SN - 0743-7463 VL - 35 IS - 8 SP - 3048 EP - 3057 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Haubitz, Toni A1 - John, Leonard A1 - Wessig, Pablo A1 - Kumke, Michael Uwe T1 - Photophysics of Acyl- and Ester-DBD Dyes BT - Quadrupole-Induced Solvent Relaxation Investigated by Transient Absorption Spectroscopy JF - the journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - A new generation of wavelength-tunable, fluorescent dyes, so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes, were developed a few years ago, and they showed great potential as probes, for example, for fluorescence microscopy. However, their photophysics is not fully explored and leaves open questions regarding their large fluorescence Stokes shifts and sensitivity to solvent conditions of differently substituted DBD dyes. To improve the understanding of the influence of the substitution pattern of the DBD dyes on their respective photophysics, transient absorption spectroscopy (TAS) was used, that is, a pump-probe experiment on the femtosecond timescale. TAS allows measurements of excited states, ground state recovery, solvent relaxation, and fluorescence properties on time scales of up to several nanoseconds. Two different DBD dye samples were investigated: aryl- and ester-substituted DBD dyes. Experiments were carried out in solvents with different polarities using different excitation energies and at different viscosities. Based on the experimental data and theoretical calculations, we were able to determine the conformational changes of the molecule due to electronic excitation and were able to investigate solvent relaxation processes for both types of DBD dyes. By generalizing the theory for quadrupole-induced solvent relaxation developed by Togashi et al., we derived quadrupole moments of both molecules in the ground and excited state. Our data showed differences in the binding of polar solvent molecules to the dyes depending on the substituent on the DBD dye. In the case of water as the solvent, an additional efficient quenching process in the electronically excited state was revealed, which was indicated by the observation of solvated electrons in the TAS signals. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpca.9b02973 SN - 1089-5639 VL - 123 IS - 22 SP - 4717 EP - 4726 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2019 U6 - https://doi.org/10.1002/open.201900249 SN - 2191-1363 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH-Verl. CY - Weinheim ER - TY - JOUR A1 - Wang, Weiwei A1 - Xu, Xun A1 - Li, Zhengdong A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young’s modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels. KW - Poly(n-butyl acrylate) KW - mechanical property KW - vascular graft KW - mesenchymal stem cells KW - VEGF Y1 - 2019 U6 - https://doi.org/10.3233/CH-189418 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 277 EP - 289 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Deng, Zijun A1 - Zou, Jie A1 - Wang, Weiwei A1 - Nie, Yan A1 - Tung, Wing-Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Dedifferentiation of mature adipocytes with periodic exposure to cold JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells. KW - Adipocyte KW - dedifferentiation KW - cold KW - lipid Y1 - 2019 U6 - https://doi.org/10.3233/CH-199005 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 415 EP - 424 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Nie, Yan A1 - Wang, Weiwei A1 - Xu, Xun A1 - Zou, Jie A1 - Bhuvanesh, Thanga A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs. KW - Polymeric substrate KW - surface coating KW - induced pluripotent stem cells KW - cell adhesion Y1 - 2019 U6 - https://doi.org/10.3233/CH-189318 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 531 EP - 542 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Qin, Qing A1 - Heil, T. A1 - Schmidt, J. A1 - Schmallegger, Max A1 - Gescheidt, Georg A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron-Carbon-Nitrogen Catalyst JF - ACS Applied Energy Materials N2 - The electrochemical conversion of low-cost precursors into high-value chemicals using renewably generated electricity is a promising approach to build up an environmentally friendly energy cycle, including a storage element. The large-scale implementation of such process can, however, only be realized by the design of cost-effective electrocatalysts with high efficiency and highest stability. Here, we report the synthesis of N and B codoped porous carbons. The constructed B-N motives combine abundant unpaired electrons and frustrated Lewis pairs (FLPs). They result in desirable performance for electrochemical N-2 reduction reaction (NRR) and electrooxidation of 5-hydroxymethylfurfural (HMF) in the absence of any metal cocatalyst. A maximum Faradaic efficiency of 15.2% with a stable NH3 production rate of 21.3 mu g h(-1) mg(-1) is obtained in NRR. Besides, 2,5-furandicarboxylic acid (FDCA) is first obtained by using non-metalbased electrocatalysts at a conversion of 71% and with yield of 57%. Gas adsorption experiments elucidate the relationship between the structure and the ability of the catalysts to activate the substrate molecules. This work opens up deep insights for the rational design of non-metal-based catalysts for potential electrocatalytic applications and the possible enhancement of their activity by the introduction of FLPs and point defects at grain boundaries. KW - non-metal catalysis KW - porous carbon KW - heteroatoms KW - N-2 reduction KW - HMF oxidation Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b01852 SN - 2574-0962 VL - 2 IS - 11 SP - 8359 EP - 8365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yan, Runyu A1 - Josef, Elinor A1 - Huang, Haijian A1 - Leus, Karen A1 - Niederberger, Markus A1 - Hofmann, Jan P. A1 - Walczak, Ralf A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers JF - Advanced functional materials N2 - Microporous nitrogen-rich carbon fibers (HAT-CNFs) are produced by electrospinning a mixture of hexaazatriphenylene-hexacarbonitrile (HAT-CN) and polyvinylpyrrolidone and subsequent thermal condensation. Bonding motives, electronic structure, content of nitrogen heteroatoms, porosity, and degree of carbon stacking can be controlled by the condensation temperature due to the use of the HAT-CN with predefined nitrogen binding motives. The HAT-CNFs show remarkable reversible capacities (395 mAh g(-1) at 0.1 A g(-1)) and rate capabilities (106 mAh g(-1) at 10 A g(-1)) as an anode material for sodium storage, resulting from the abundant heteroatoms, enhanced electrical conductivity, and rapid charge carrier transport in the nanoporous structure of the 1D fibers. HAT-CNFs also serve as a series of model compounds for the investigation of the contribution of sodium storage by intercalation and reversible binding on nitrogen sites at different rates. There is an increasing contribution of intercalation to the charge storage with increasing condensation temperature which becomes less active at high rates. A hybrid sodium-ion capacitor full cell combining HAT-CNF as the anode and salt-templated porous carbon as the cathode provides remarkable performance in the voltage range of 0.5-4.0 V (95 Wh kg(-1) at 0.19 kW kg(-1) and 18 Wh kg(-1) at 13 kW kg(-1)). KW - carbon fibers KW - nitrogen-doped carbon KW - sodium-ion capacitors KW - sodium storage mechanism Y1 - 2019 U6 - https://doi.org/10.1002/adfm.201902858 SN - 1616-301X SN - 1616-3028 VL - 29 IS - 26 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Hei, Tobias A1 - Wang, Gui-Chang A1 - Adler, Peter A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors JF - Energy Storage Materials N2 - Strong metal oxide-support interaction is crucial to activate high energy storage modes of carbon-supported hybrid electrodes in ionic liquid-based supercapacitors. Although it is known that conductive supports can influence the electrochemical properties of metal oxides, insights into how metal oxide-support interactions can be exploited to optimize joint energy storage properties are lacking. We report the junction between alpha-Fe2O3 nanosplotches and phosphorus-doped ordered mesoporous carbon (CMK-3-P) with strong covalent anchoring of the metal oxide. The oxide-carbon interaction in CMK-3-P-Fe2O3 is strengthening the junction and charge transfer between Fe2O3 and CMK-3-P. It enhances energy storage by intensifying the interaction between ionic liquid ions and the surface of the electrode. Density functional theory simulations reveal that the strong metal oxide-support interaction increases the adsorption energy of ionic liquid to -4.77 eV as compared to -3.85 eV for a CMK-3Fe(2)O(3) hybrid with weaker binding. In spite of the lower specific surface area and apparently similar energy storage mode, the CMK-3-P-Fe2O3 exhibits superior electrical double-layer capacitor performance with a specific capacitance of 179 F g(-1) at 2 mV s(-1) (0-3.5 V) in comparison to Fe2O3-free CMK-3 and CMK-3-P reference materials. This principle for design of hybrid electrodes can be applicable for future rational design of stable metal oxide-support electrodes for advanced energy storage. KW - Supercapacitor KW - Nanohybrid KW - Iron oxide KW - Ionic liquid KW - Ordering transitions KW - Main text Y1 - 2019 U6 - https://doi.org/10.1016/j.ensm.2019.04.035 SN - 2405-8297 VL - 20 SP - 188 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bald, Ilko A1 - Schürmann, Robin Mathis A1 - Ebel, Kenny A1 - Nicolas, Christophe A1 - Milosavljevic, Aleksandar R. T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol JF - The Journal of Physical Chemistry Letters N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. Y1 - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00848 U6 - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - da Silva, Filipe Ferreira A1 - Varella, Marcio T. do N. A1 - Jones, Nykola C. A1 - Hoffmann, Soren Vronning A1 - Denifl, Stephan A1 - Bald, Ilko A1 - Kopyra, Janina T1 - Electron-Induced Reactions in 3-Bromopyruvic Acid JF - Chemistry - a European journal N2 - 3-Bromopyruvic acid (3BP) is a potential anticancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br- close to 0 eV and within several resonant features at 1.9 and 3-8 eV. At low electron energies, Br- formation proceeds through sigma* and pi* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser. KW - density functional calculations KW - dissociative electron attachment KW - drug discovery KW - gas-phase reactions KW - sensitizers Y1 - 2019 U6 - https://doi.org/10.1002/chem.201806132 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 21 SP - 5498 EP - 5506 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin Mathis A1 - Heck, Christian A1 - Meiling, Till A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks BT - Influence of the DNA Sequence and Substrate JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - vacuum-UV radiation Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201801152 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Das, Abhijna A1 - El-Tawargy, Ahmed S. A1 - Khechine, Emna A1 - Noack, Sebastian A1 - Schlaad, Helmut A1 - Reiter, Günter A1 - Reiter, Renate T1 - Controlling Nucleation in Quasi-Two-Dimensional Langmuir Poly(L-lactide) Films through Variation of the Rate of Compression JF - Langmuir N2 - We studied morphological changes in a quasi-two-dimensional Langmuir film of low molar mass poly(L-lactide) upon increasing the surface density, starting from randomly distributed molecules to a homogeneous monolayer of closely packed molecules, followed by nucleation and growth of mesoscopic, three-dimensional clusters from an overcompressed monolayer. The corresponding nucleation density of mesoscopic clusters within the monolayer can be tailored through variation of the rate of compression. For a given surface density and temperature, the nucleation probability was found to increase linearly with the rate of compression, allowing to adjust the density of mesoscopic clusters over nearly 2 orders magnitude. Y1 - 2019 U6 - https://doi.org/10.1021/acs.langmuir.9b00619 SN - 0743-7463 VL - 35 IS - 18 SP - 6129 EP - 6136 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Behrendt, Felix Nicolas A1 - Hess, Andreas A1 - Lehmann, Max A1 - Schmidt, Bernd A1 - Schlaad, Helmut T1 - Polymerization of cystine-derived monomers JF - Polymer Chemistry N2 - Cystine was used as a platform chemical to prepare cyclic and acyclic monomers for entropy-driven ringopening polymerization (ED-ROMP) via olefin or disulfide metathesis and for step-growth polymerization. The olefin ED-ROMP of an olefin/disulfide containing 16-atom macrocycle using the 3rd generation Grubbs catalyst was examined in greater detail. Kinetic studies revealed that the catalyst turned inactive during the polymerization, which limited the achievable (apparent) polymer molar mass to similar to 70 kg mol(-1). Such limitation could be overcome with the disulfide ED-ROMP of the same macrocycle to yield polymers with molar masses of up to 180 kg mol(-1). The step-growth polymerizations of acyclic diene and dithiol monomers via olefin metathesis or oxidation were far less effective and yielded just low molar mass polymers or oligomers; photopolymerization of a thiol-ene monomer produced a polyester with a molar mass of 35 kg mol(-1). Y1 - 2019 U6 - https://doi.org/10.1039/c9py00118b SN - 1759-9954 SN - 1759-9962 VL - 10 IS - 13 SP - 1636 EP - 1641 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Lüdecke, Nils A1 - Weidner, Steffen M. A1 - Schlaad, Helmut T1 - Poly(2-oxazoline)s Based on Phenolic Acids JF - Macromolecular rapid communications N2 - A series of phenolic-acid-based 2-oxazoline monomers with methoxy-substituted phenyl and cinnamyl side chains is synthesized and polymerized in a microwave reactor at 140 °C using methyl tosylate as the initiator. The obtained poly(2-oxazoline)s are characterized by NMR spectroscopy, MALDI-TOF mass spectrometry, and size-exclusion chromatography (SEC). Kinetic studies reveal that the microwave-assisted polymerization is fast and completed within less than ≈10 min for low monomer-to-initiator ratios of ≤25. Polymers with number-average molar masses of up to 6500 g mol−1 and low dispersity (1.2–1.3) are produced. The aryl methyl ethers are successfully cleaved with aluminum triiodide/N,N′-diisopropylcarbodiimide to give a poly(2-oxazoline) with pendent catechol groups. KW - 2-oxazoline KW - catechol KW - cationic ring-opening polymerization KW - microwave KW - phenolic acid Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900404 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Heck, Christian A1 - Schürmann, Robin Mathis A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV induced DNA strand breaks BT - influence of the radiosensitizers 5-bromouracil and 8-bromoadenine JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (U-5Br) and 8-bromoadenine ((8Br)A) are investigated. U-5Br was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to U-5Br, whereas guanine as a neighboring nucleobase decreases the activity of U-5Br indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to U-5Br separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and U-5Br until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of U-5Br. (8Br)A was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with (8Br)A. Y1 - 2019 U6 - https://doi.org/10.1039/c8cp06813e SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 4 SP - 1972 EP - 1979 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Hess, Andreas A1 - Schlaad, Helmut A1 - Koetz, Joachim T1 - Temperature-triggered reversible breakdown of polymer-stabilized olive BT - silicone oil Janus emulsions JF - RSC Advances N2 - A one-step moderate energy vibrational emulsification method was successfully employed to produce thermo-responsive olive/silicone-based Janus emulsions stabilized by poly(N,N-diethylacrylamide) carrying 0.7 mol% oleoyl side chains. Completely engulfed emulsion droplets remained stable at room temperature and could be destabilized on demand upon heating to the transition temperature of the polymeric stabilizer. Time-dependent light micrographs demonstrate the temperature-induced breakdown of the Janus droplets, which opens new aspects of application, for instance in biocatalysis. KW - microgels KW - step Y1 - 2019 U6 - https://doi.org/10.1039/c9ra03463c SN - 2046-2069 VL - 9 IS - 35 SP - 19271 EP - 19277 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Saretia, Shivam A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Reversible 2D networks of oligo(epsilon-caprolactone) at the air-water interface JF - Biomedical Materials N2 - Hydroxyl terminated oligo(epsilon-caprolactone) (OCL) monolayers were reversibly cross-linked forming two dimensional networks (2D) at the air-water interface. The equilibrium reaction with glyoxal as the cross-linker is pH-sensitive. Pronounced contraction in the area of the prepared 2DOCL films in dependence of surface pressure and time revealed the process of the reaction. Cross-linking inhibited crystallization and retarded enzymatic degradation of the OCLfilm. Altering the subphase pH led to a cleavage of the covalent acetal cross-links. The reversibility of the covalent acetal cross-links was proved by observing an identical isotherm as non-cross-linked sample. Besides as model systems, these customizable reversible OCL2D networks are intended for use as pHresponsive drug delivery systems or functionalized cell culture substrates. KW - poly(epsilon-caprolactone) KW - langmuir monolayer KW - two dimensional network KW - crystallization KW - cross-linking Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/ab0cef SN - 1748-6041 SN - 1748-605X VL - 14 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design JF - Macromolecular rapid communications N2 - Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments. KW - artificial muscles KW - magnetosensitivity KW - nanocomposites KW - soft actuators Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900440 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Balk, Maria A1 - Lendlein, Andreas T1 - Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks JF - Chemistry of materials : a publication of the American Chemical Society N2 - Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand. Y1 - 2019 U6 - https://doi.org/10.1021/acs.chemmater.9b00363 SN - 0897-4756 SN - 1520-5002 VL - 31 IS - 15 SP - 5402 EP - 5407 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mazurek-Budzyńska, Magdalena A1 - Behl, Marc A1 - Razzaq, Muhammad Yasar A1 - Nöchel, Ulrich A1 - Rokicki, Gabriel A1 - Lendlein, Andreas T1 - Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment JF - Polymer Degradation and Stability N2 - Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd. KW - Poly(carbonate-urea-urethane)s KW - Hydrolytic stability KW - Degradation Y1 - 2019 SN - 0141-3910 SN - 1873-2321 VL - 161 SP - 283 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhang, Quanchao A1 - Rudolph, Tobias A1 - Benitez, Alejandro J. A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes JF - Smart materials and structures N2 - Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300% and 100% reversible strain changes of εʹrev = 22% ± 1% and 6% ± 1% were measured, with switching temperature ranges of 10 °C–30 °C and 45 °C–60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11% ± 3% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality. KW - reversible shape-memory effect KW - fiber meshes KW - electrospinning Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab10a1 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Quadruple-shape hydrogels JF - Smart materials and structures N2 - The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent. KW - shape-memory KW - hydrogels KW - semi-crystalline Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab0e91 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate JF - MRS advances N2 - Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt%) and n-butyl acrylate (25 wt% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.202 SN - 2059-8521 VL - 4 IS - 21 SP - 1193 EP - 1205 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Mazurek-Budzynska, Magdalena A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Shape-Memory Polymers JF - Functional Polymers N2 - Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple-and multi-shape effects (TSE/ MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches. Y1 - 2019 SN - 978-3-319-95987-0 SN - 978-3-319-95986-3 U6 - https://doi.org/10.1007/978-3-319-95987-0_18 SN - 2510-3458 SN - 2510-3466 SP - 605 EP - 663 PB - Springer CY - Cham ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities JF - MRS Advances N2 - Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.123 SN - 2059-8521 VL - 4 IS - 19 SP - 1057 EP - 1065 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Bhuvanesh, Thanga A1 - Machatschek, Rainhard Gabriel A1 - Lysyakova, Liudmila A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Collagen type-IV Langmuir and Langmuir-Schafer layers as model biointerfaces to direct stem cell adhesion JF - Biomedical materials : materials for tissue engineering and regenerative medicine N2 - In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schafer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m(-1). Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m(-1) onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m(-1) on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses. KW - collagen-IV KW - basement membrane KW - Langmuir-Schafer films KW - stem cell adhesion KW - protein KW - ellipsometry Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/aaf464 SN - 1748-6041 SN - 1748-605X VL - 14 IS - 2 PB - Inst. of Physics Publ. CY - Bristol ER - TY - JOUR A1 - Bruun, Kristina A1 - Hille, Carsten T1 - Study on intracellular delivery of liposome encapsulated quantum dots using advanced fluorescence microscopy JF - Scientific reports N2 - Quantum dots increasingly gain popularity for in vivo applications. However, their delivery and accumulation into cells can be challenging and there is still lack of detailed information. Thereby, the application of advanced fluorescence techniques can expand the portfolio of useful parameters for a more comprehensive evaluation. Here, we encapsulated hydrophilic quantum dots into liposomes for studying cellular uptake of these so-called lipodots into living cells. First, we investigated photophysical properties of free quantum dots and lipodots observing changes in the fluorescence decay time and translational diffusion behaviour. In comparison to empty liposomes, lipodots exhibited an altered zeta potential, whereas their hydrodynamic size did not change. Fluorescence lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS), both combined with two-photon excitation (2P), were used to investigate the interaction behaviour of lipodots with an insect epithelial tissue. In contrast to the application of free quantum dots, their successful delivery into the cytosol of salivary gland duct cells could be observed when applying lipodots. Lipodots with different lipid compositions and surface charges did not result in considerable differences in the intracellular labelling pattern, luminescence decay time and diffusion behaviour. However, quantum dot degradation after intracellular accumulation could be assumed from reduced luminescence decay times and blue-shifted luminescence signals. In addition to single diffusing quantum dots, possible intracellular clustering of quantum dots could be assumed from increased diffusion times. Thus, by using a simple and manageable liposome carrier system, 2P-FLIM and 2P-FCS recording protocols could be tested, which are promising for investigating the fate of quantum dots during cellular interaction. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-46732-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Friess, Fabian A1 - Roch, Toralf A1 - Seifert, Barbara A1 - Lendlein, Andreas A1 - Wischke, Christian T1 - Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(epsilon-caprolactone) JF - International Journal of Pharmaceutics N2 - The effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(epsilon-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of similar to 6, similar to 10, and 13 mu m, loaded with a fluorescent dye by a specific technique of swelling, redispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of similar to 4 as obtained by a phantom elongation epsilon(ph) of similar to 150%. Uptake studies with a murine macrophages cell line showed shape dependency of phagocytosis for selected conditions when varying particle sizes (similar to 6 and 10 mu m),and shapes (epsilon(ph): 0, 75 or 150%), cell-particle ratios (1:1, 1:2, 1:10, 1:50), and time points (1-24 h). For larger-sized MNC, there was no significant shape effect on phagocytosis as these particles may associate with more than one cell, thus increasing the possibility of phagocytosis by any of these cells. Accordingly, controlling shape effects on phagocytosis for carriers made from degradable polymers relevant for medical applications requires considering further parameters besides shape, such as kinetic aspects of the exposure and uptake by cells. KW - Particle shape KW - Phagocytosis KW - Macrophage KW - Polymer micronetwork colloids KW - Poly(epsilon-caprolactone) Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpharm.2019.118461 SN - 0378-5173 SN - 1873-3476 VL - 567 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Friess, Fabian A1 - Wischke, Christian A1 - Lendlein, Andreas T1 - Microscopic analysis of shape-shiftable oligo(epsilon-caprolactone)-based particles JF - MRS advances N2 - Spherical particles are routinely monitored and described by hydrodynamic diameters determined, e.g., by light scattering techniques. Non-spherical particles such as prolate ellipsoids require alternative techniques to characterize particle size as well as particle shape. In this study, oligo(epsilon-caprolactone) (oCL) based micronetwork (MN) particles with a shape-shifting function based on their shape-memory capability were programmed from spherical to prolate ellipsoidal shape aided by incorporation and stretching in a water-soluble phantom matrix. By applying light microscopy with automated contour detection and aspect ratio analysis, differences in characteristic aspect ratio distributions of non-crosslinked microparticles (MPs) and crosslinked MNs were detected when the degrees of phantom elongation (30-290%) are increased. The thermally induced shape recovery of programmed MNs starts in the body rather than from the tips of ellipsoids, which may be explained based on local differences in micronetwork deformation. By this approach, fascinating intermediate particle shapes with round bodies and two opposite sharp tips can be obtained, which could be of interest, e.g., in valves or other technical devices, in which the tips allow to temporarily encage the switchable particle in the desired position. KW - biomaterial KW - particulate KW - shape memory KW - responsive Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.392 SN - 2059-8521 VL - 4 IS - 59-60 SP - 3199 EP - 3206 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Koc, Julian A1 - Schönemann, Eric A1 - Arnuthalingam, Ajitha A1 - Clarke, Jessica L. A1 - Finlay, John A. A1 - Clare, Anthony S. A1 - Laschewsky, Andre A1 - Rosenhahn, Axel T1 - Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions JF - Langmuir N2 - Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer’s precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure. Y1 - 2019 U6 - https://doi.org/10.1021/acs.langmuir.8b02799 SN - 0743-7463 VL - 35 IS - 5 SP - 1552 EP - 1562 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schönemann, Eric A1 - Koc, Julian A1 - Aldred, Nick A1 - Clare, Anthony S. A1 - Laschewsky, André A1 - Rosenhahn, Axel A1 - Wischerhoff, Erik T1 - Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties JF - Macromolecular rapid communications N2 - The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance. KW - antifouling KW - coatings KW - crosslinking KW - hydrophilic polymers KW - polyzwitterions Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900447 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kirste, Matthias A1 - Brietzke, Thomas Martin A1 - Holdt, Hans-Jürgen A1 - Schilde, Uwe T1 - The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂ JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) Å, b=11.4021(14) Å, c=13.3572(15) Å, β=105.363(8)°, V =1164.5(2) ų, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K. Y1 - 2019 U6 - https://doi.org/10.1515/NCRS-2019-0385 SN - 2196-7105 SN - 2194-4946 VL - 234 IS - 6 SP - 1255 EP - 1257 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Khodeir, Miriam A1 - Ernould, Bruno A1 - Brassinne, Jeremy A1 - Ghiassinejad, Sina A1 - Jia, He A1 - Antoun, Sayed A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Kochovski, Zdravko A1 - Lu, Yan A1 - Van Ruymbeke, Evelyne A1 - Gohy, Jean-Francois T1 - Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals JF - Soft matter N2 - The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm00905a SN - 1744-683X SN - 1744-6848 VL - 15 IS - 31 SP - 6418 EP - 6426 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Kochovski, Zdravko A1 - Lee, Hui-Chun A1 - Lu, Yan A1 - Zhang, Hemin A1 - Zhang, Jie A1 - Sun, Jian-Ke A1 - Yuan, Jiayin T1 - Ionic organic cage-encapsulating phase-transferable metal clusters JF - Chemical science N2 - Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal–ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min−1. Y1 - 2019 U6 - https://doi.org/10.1039/c8sc04375b SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 5 SP - 1450 EP - 1456 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Kreuzer, Alex A1 - Behrens, Karsten A1 - Schütz, Gisela A1 - Holdt, Hans-Jürgen A1 - Hirscher, Michael T1 - Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity. KW - gas adsorption KW - hydrogen isotopes KW - isotope separation KW - metal-organic frameworks KW - quantum sieving Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201900183 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 10 SP - 1311 EP - 1315 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans-Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response JF - Chemistry - a European journal N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902536 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 53 SP - 12412 EP - 12422 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Walkowiak, Jacek A1 - Lu, Yan A1 - Gradzielski, Michael A1 - Zauscher, Stefan A1 - Ballauff, Matthias T1 - Thermodynamic analysis of the uptake of a protein in a spherical polyelectrolyte brush JF - Macromolecular rapid communications N2 - A thermodynamic study of the adsorption of Human Serum Albumin (HSA) onto spherical polyelectrolyte brushes (SPBs) by isothermal titration calorimetry (ITC) is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly(acrylic acid). ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two-step model. The free energy of binding Delta Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy (FT-IR) demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion release. KW - Spherical polyelectrolyte brushes KW - proteins KW - ITC KW - thermodynamics KW - enthalpy-entropy compensation (EEC) Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900421 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Scholz, Robert A1 - Lindner, Steven A1 - Loncaric, Ivor A1 - Tremblay, Jean Christophe A1 - Juaristi, J. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Vibrational response and motion of carbon monoxide on Cu(100) driven by femtosecond laser pulses: Molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - Carbon monoxide on copper surfaces continues to be a fascinating, rich microlab for many questions evolving in surface science. Recently, hot-electron mediated, femtosecond-laser pulse induced dynamics of CO molecules on Cu(100) were the focus of experiments [Inoue et al., Phys. Rev. Lett. 117, 186101 (2016)] and theory [Novko et al., Phys. Rev. Lett. 122, 016806 (2019)], unraveling details of the vibrational nonequilibrium dynamics on ultrashort (subpicoseconds) timescales. In the present work, full-dimensional time-resolved hot-electron driven dynamics are studied by molecular dynamics with electronic friction (MDEF). Dissipation is included by a friction term in a Langevin equation which describes the coupling of molecular degrees of freedom to electron-hole pairs in the copper surface, calculated from gradient-corrected density functional theory (DFT) via a local density friction approximation (LDFA). Relaxation due to surface phonons is included by a generalized Langevin oscillator model. The hot-electron induced excitation is described via a time-dependent electronic temperature, the latter derived from an improved two-temperature model. Our parameter-free simulations on a precomputed potential energy surface allow for excellent statistics, and the observed trends are confirmed by on-the-fly ab initio molecular dynamics with electronic friction (AIMDEF) calculations. By computing time-resolved frequency maps for selected molecular vibrations, instantaneous frequencies, probability distributions, and correlation functions, we gain microscopic insight into hot-electron driven dynamics and we can relate the time evolution of vibrational internal CO stretch-mode frequencies to measured data, notably an observed redshift. Quantitatively, the latter is found to be larger in MDEF than in experiment and possible reasons are discussed for this observation. In our model, in addition we observe the excitation and time evolution of large-amplitude low-frequency modes, lateral CO surface diffusion, and molecular desorption. Effects of surface atom motion and of the laser fluence are also discussed. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.245431 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 24 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus A1 - Leenen, Matthias A1 - Bald, Ilko T1 - Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF JF - Scientific Reports N2 - Within the framework of precision agriculture, the determination of various soil properties is moving into focus, especially the demand for sensors suitable for in-situ measurements. Energy-dispersive X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal component analysis (PCA) was performed to identify possible similarities among the sample set. Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate data evaluation with partial least squares regression (PLSR) was assessed for accurate determination of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged deviation and PLSR should therefore be preferred. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-53426-5 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Riebe, Daniel A1 - Erler, Alexander A1 - Brinkmann, Pia A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Gebbers, Robin T1 - Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture JF - Sensors N2 - The lack of soil data, which are relevant, reliable, affordable, immediately available, and sufficiently detailed, is still a significant challenge in precision agriculture. A promising technology for the spatial assessment of the distribution of chemical elements within fields, without sample preparation is laser-induced breakdown spectroscopy (LIBS). Its advantages are contrasted by a strong matrix dependence of the LIBS signal which necessitates careful data evaluation. In this work, different calibration approaches for soil LIBS data are presented. The data were obtained from 139 soil samples collected on two neighboring agricultural fields in a quaternary landscape of northeast Germany with very variable soils. Reference analysis was carried out by inductively coupled plasma optical emission spectroscopy after wet digestion. The major nutrients Ca and Mg and the minor nutrient Fe were investigated. Three calibration strategies were compared. The first method was based on univariate calibration by standard addition using just one soil sample and applying the derived calibration model to the LIBS data of both fields. The second univariate model derived the calibration from the reference analytics of all samples from one field. The prediction is validated by LIBS data of the second field. The third method is a multivariate calibration approach based on partial least squares regression (PLSR). The LIBS spectra of the first field are used for training. Validation was carried out by 20-fold cross-validation using the LIBS data of the first field and independently on the second field data. The second univariate method yielded better calibration and prediction results compared to the first method, since matrix effects were better accounted for. PLSR did not strongly improve the prediction in comparison to the second univariate method. KW - laser-induced breakdown spectroscopy KW - LIBS KW - proximal soil sensing KW - soil nutrients KW - elemental composition Y1 - 2019 U6 - https://doi.org/10.3390/s19235244 SN - 1424-8220 VL - 19 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Krueger, Tobias A1 - Kelling, Alexandra A1 - Linker, Torsten A1 - Schilde, Uwe T1 - Crystal structures of three cyclohexane‑based γ‑spirolactams BT - determination of configurations and conformations JF - BMC Chemistry N2 - The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N–H···O hydrogen bonds. KW - 2-Azaspiro[4.5]deca-1-ones KW - Cis- and trans-form KW - Configuration KW - Conformation KW - Lactams Y1 - 2019 U6 - https://doi.org/10.1186/s13065-019-0586-7 SN - 2661-801X VL - 13 IS - 69 PB - Springer International Publishing CY - Basel ER - TY - JOUR A1 - Debsharma, Tapas A1 - Behrendt, Felix Nicolas A1 - Laschewsky, Andre A1 - Schlaad, Helmut T1 - Ring-opening metathesis polymerization of biomass-derived levoglucosenol JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker N2 - The readily available cellulose-derived bicyclic compound levoglucosenol was polymerized through ring-opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass-derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High-molar-mass polyacetals with apparent weight-average molar masses of up to 100kgmol(-1) and dispersities of approximately 2 were produced despite the non-living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 degrees C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment. KW - degradable polymers KW - metathesis KW - ring-opening polymerization KW - sustainable chemistry KW - thermoplastics Y1 - 2019 U6 - https://doi.org/10.1002/anie.201814501 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 20 SP - 6718 EP - 6721 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Fundamental insights in PLGA degradation from thin film studies JF - Journal of controlled release : official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems N2 - Poly(lactide-co-glycolide)s are commercially available degradable implant materials, which are typically selected based on specifications given by the manufacturer, one of which is their molecular weight. Here, we address the question whether variations in the chain length and their distribution affect the degradation behavior of Poly[(rac-lactide)-co-glycolide]s (PDLLGA). The hydrolysis was studied in ultrathin films at the air-water interface in order to rule out any morphological effects. We found that both for purely hydrolytic degradation as well as under enzymatic catalysis, the molecular weight has very little effect on the overall degradation kinetics of PDLLGAs. The quantitative analysis suggested a random scission mechanism. The monolayer experiments showed that an acidic micro-pH does not accelerate the degradation of PDLLGAs, in contrast to alkaline conditions. The degradation experiments were combined with interfacial rheology measurements, which showed a drastic decrease of the viscosity at little mass loss. The extrapolated molecular weight behaved similar to the viscosity, dropping to a value near to the solubility limit of PDLLGA oligomers before mass loss set in. This observation suggests a solubility controlled degradation of PDLLGA. Conclusively, the molecular weight affects the degradation of PDLLGA devices mostly in indirect ways, e.g. by determining their morphology and porosity during fabrication. Our study demonstrates the relevance of the presented Langmuir degradation method for the design of controlled release systems. KW - PDLLGA KW - Degradation KW - Langmuir monolayer Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.12.044 SN - 0168-3659 SN - 1873-4995 VL - 319 SP - 276 EP - 284 PB - Elsevier CY - New York ER - TY - JOUR A1 - Bouakline, Foudhil A1 - Fischer, E. W. A1 - Saalfrank, Peter T1 - A quantum-mechanical tier model for phonon-driven vibrational relaxation dynamics of adsorbates at surfaces JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We present a quantum-mechanical tier model for vibrational relaxation of low-lying excited states of an adsorbate vibrational mode (system), coupled to surface phonons (bath), at zero temperature. The tier model, widely used in studies of intramolecular vibrational energy redistribution in polyatomics, is adapted here to adsorbate-surface systems with the help of an embedded cluster approach, using orthogonal coordinates for the system and bath modes, and a phononic expansion of their interaction. The key idea of the model is to organize the system-bath zeroth-order vibrational space into a hierarchical structure of vibrational tiers and keep therein only vibrational states that are sequentially generated from the system-bath initial vibrational state. Each tier is generated from the previous one by means of a successor operator, derived from the system-bath interaction Hamiltonian. This sequential procedure leads to a drastic reduction of the dimension of the system-bath vibrational space. We notably show that for harmonic vibrational motion of the system and linear system-bath couplings in the system coordinate, the dimension of the tier-model vibrational basis scales as similar to N-lxv. Here, N is the number of bath modes, l is the highest-order of the phononic expansion, and l is the size of the system vibrational basis. This polynomial scaling is computationally far superior to the exponential scaling of the original zeroth-order vibrational basis, similar to M-N, with M being the number of basis functions per bath mode. In addition, since each tier is coupled only to its adjacent neighbors, the matrix representation of the system-bath Hamiltonian in this new vibrational basis has a symmetric block-tridiagonal form, with each block being very sparse. This favors the combination of the tier-model with iterative Krylov techniques, such as the Lanczos algorithm, to solve the time-dependent Schrodinger equation for the full Hamiltonian. To illustrate the method, we study vibrational relaxation of a D-Si bending mode, coupled via two-and (mainly) one-phonon interactions to a fully D-covered Si(100)-(2 x 1) surface, using a recent first-principles system-bath Hamiltonian. The results of the tier model are compared with those obtained by the Lindblad formalism of the reduced density matrix. We find that the tier model provides much more information and insight into mechanisms of vibration-phonon couplings at surfaces, and gives more reliable estimates of the adsorbate vibrational lifetimes. Moreover, the tier model might also serve as a benchmark for other approximate quantum-dynamics methods, such as multiconfiguration wavefunction approaches. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5099902 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 24 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Garakani, Tayebeh Mirzaei A1 - Liu, Zhanzhi A1 - Glebe, Ulrich A1 - Gehrmann, Julia A1 - Lazar, Jaroslav A1 - Mertens, Marie Anna Stephanie A1 - Möller, Mieke A1 - Hamzelui, Niloofar A1 - Zhu, Leilei A1 - Schnakenberg, Uwe A1 - Böker, Alexander A1 - Schwaneberg, Ulrich T1 - In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach JF - ACS applied materials & interfaces N2 - Synthosomes are polymer vesicles with trans membrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest beta-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Delta 1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA Delta CVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes. KW - synthosomes KW - solid-supported biomimetic membranes KW - polymersome spreading KW - electrochemical impedance spectroscopy KW - FhuA Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b09302 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 32 SP - 29276 EP - 29289 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Reinicke, Stefan A1 - Fischer, Thilo A1 - Bramski, Julia A1 - Pietruszka, Jörg A1 - Böker, Alexander T1 - Biocatalytically active microgels by precipitation polymerization of N-isopropyl acrylamide in the presence of an enzyme JF - RSC Advances N2 - We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 mu m and narrow size distribution could be synthesized while about 31-44% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature. Y1 - 2019 U6 - https://doi.org/10.1039/c9ra04000e SN - 2046-2069 VL - 9 IS - 49 SP - 28377 EP - 28386 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Sperling, Marcel A1 - Reifarth, Martin A1 - Grobe, Richard A1 - Böker, Alexander T1 - Tailoring patches on particles: a modified microcontact printing routine using polymer-functionalised stamps JF - Chemical communications N2 - Herein, we report a modified microcontact printing (mu CP) routine suitable to introduce particle patches of a low molecular weight ink (LMWI) on porous SiO2 microparticles. Thereby, patch precision could be significantly improved by utilising stamps which have been surface-functionalised with grafted polymers. This improvement was evaluated by a profound software-assisted statistical analysis. Y1 - 2019 U6 - https://doi.org/10.1039/c9cc03903a SN - 1359-7345 SN - 1364-548X VL - 55 IS - 68 SP - 10104 EP - 10107 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mehr, Fatemeh Naderi A1 - Grigoriev, Dmitry A1 - Puretskiy, Nikolay A1 - Böker, Alexander T1 - Mono-patchy zwitterionic microcolloids as building blocks for pH-controlled self-assembly JF - Soft matter N2 - A directional molecular interaction between microcolloids can be achieved through pre-defined sites on their surface, patches, which might make them follow each other in a controlled way and assemble into target structures of more complexity. In this article, we report the successful generation and characterization of mono-patchy melamine-formaldehyde microparticles with oppositely charged patches made of poly(methyl vinyl ether-alt-maleic acid) or polyethyleneimine via microcontact printing. The study of their self-aggregation behavior in solution shows that by change of pH, particle dimers are formed via attractive electrostatic force between the patchy and non-patchy surface of the particles, which reaches its optimum at a specific pH. Y1 - 2019 U6 - https://doi.org/10.1039/c8sm02151a SN - 1744-683X SN - 1744-6848 VL - 15 IS - 11 SP - 2430 EP - 2438 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Naolou, Toufik A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Amides as non-polymerizable catalytic adjuncts enable the ring-opening polymerization of lactide with ferrous acetate under mild conditions JF - Frontiers in Chemistry N2 - Sn-based catalysts are effective in the ring-opening polymerization (ROP) but are toxic. Fe(OAc)(2) used as an alternative catalyst is suitable for the ROP of lactide only at higher temperatures (>170 degrees C), associated with racemization. In the ROP of ester and amide group containing morpholinediones with Fe(OAc)(2) to polydepsipeptides at 135 degrees C, ester bonds were selectively opened. Here, it was hypothesized that ROP of lactones is possible with Fe(OAc)(2) when amides are present in the reactions mixture as Fe-ligands could increase the solubility and activity of the metal catalytic center. The ROP of lactide in the melt with Fe(OAc)(2) is possible at temperatures as low as 105 degrees C, in the presence of N-ethylacetamide or N-rnethylbenzamide as non-polymerizable catalytic adjuncts (NPCA), with high conversion (up to 99 mol%) and yield (up to 88 mol%). Polydispersities of polylactide decreased with decreasing reaction temperature to <= 1.1. NMR as well as polarimetric studies showed that no racemization occurred at reaction temperatures <= 145 degrees C. A kinetic study demonstrated a living chain-growth mechanism. MALDI analysis revealed that no side reactions (e.g., cyclization) occurred, though transesterification took place. KW - ring-opening polymerization KW - polyester KW - catalyst KW - iron KW - amide ligand Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00346 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Brunacci, Nadia A1 - Neffe, Axel T. A1 - Wischke, Christian A1 - Naolou, Toufik A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Oligodepsipeptide (nano)carriers BT - computational design and analysis of enhanced drug loading JF - Journal of controlled release N2 - High drug loads of nanoparticles are essential to efficiently provide a desired dosage in the required timeframe, however, these conditions may not be reached with so far established degradable matrices. Our conceptual approach for increasing the drug load is based on strengthening the affinity between drug and matrix in combination with stabilizing drug-matrix-hybrids through strong intermolecular matrix interactions. Here, a method for designing such complex drug-matrix hybrids is introduced employing computational methods (molecular dynamics and docking) as well as experimental studies (affinity, drug loading and distribution, drug release from films and nanoparticles). As model system, dexamethasone (DXM), relevant for the treatment of inflammatory diseases, in combination with poly[(rac-lactide)-co-glycolide] (PLGA) as standard degradable matrix or oligo[(3-(S)-sec-butyl) morpholine-2,5-dione] diol (OBMD) as matrix with hypothesized stronger interaction with DXM were investigated. Docking studies predicted higher affinity of DXM to OBMD than PLGA and displayed amide bond participation in hydrogen bonding with OBMD. Experimental investigations on films and nanoparticles, i.e. matrices of different shapes and sizes, confirmed this phenomenon as shown e.g. by a similar to 10 times higher solid state solubility of DXM in OBMD than in PLGA. DXM-loaded particles of similar to 150 nm prepared by nanoprecipitation in aqueous environment had a drug loading (DL) up to 16 times higher when employing OBMD as matrix compared to PLGA carriers due to enhanced drug retention in the OBMD phase. Importantly, drug relase periods were not altered as the release from films and particles was mainly ruled by the diffusion length as well as matrix degradation rather than the matrix type, which can be assigned to water diffusing into the matrix and breaking up of drug-matrix hydrogen bonds. Overall, the presented design and fabrication scheme showed predictive power and might universally enable the screening of drug/matrix interactions particularly to expand the oligodepsipeptide platform technology, e.g. by varying the depsipeptide side chains, for drug carrier and release systems. KW - Oligodepsipeptide KW - Drug loading KW - Nanoparticles KW - Docking study KW - Molecular interaction design Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.03.004 SN - 0168-3659 SN - 1873-4995 VL - 301 SP - 146 EP - 156 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hauser, Sandra A1 - Wodtke, Robert A1 - Tondera, Christoph A1 - Wodtke, Johanna A1 - Neffe, Axel T. A1 - Hampe, Jochen A1 - Lendlein, Andreas A1 - Löser, Reik A1 - Pietzsch, Jens T1 - Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials JF - ACS biomaterials science & engineering N2 - Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used. KW - extracellular matrix modifying enzymes KW - gelatin-based hydrogels KW - biomaterial-tissue interface KW - polyamines KW - optical imaging Y1 - 2019 U6 - https://doi.org/10.1021/acsbiomaterials.9b01299 SN - 2373-9878 VL - 5 IS - 11 SP - 5979 EP - 5989 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Folikumah, Makafui Yao A1 - Neffe, Axel T. A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium JF - MRS advances : a journal of the Materials Research Society N2 - Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. ‘Click’ reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters. KW - biomaterial KW - biomedical KW - biomimetic (chemical reaction) KW - chemical synthesis Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.308 SN - 2059-8521 VL - 4 IS - 46-47 SP - 2515 EP - 2525 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Gu, Sasa A1 - Risse, Sebastian A1 - Lu, Yan A1 - Ballauff, Matthias T1 - Mechanism of the oxidation of 3,3′,5,5′-tetramethylbenzidine catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes BT - a kinetic study JF - ChemPhysChem N2 - Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3 ',5,5 '-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Pt). Due to the high stability of SPB-Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir-Hinshelwood mechanism. A true rate constant k, characterizing the rate-determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase-like nanoparticles. KW - kinetics KW - nanoparticles KW - reaction mechanisms KW - spherical polyelectrolyte KW - brushes KW - UV KW - vis spectroscopy Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201901087 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 5 SP - 450 EP - 458 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Heiden, Sophia A1 - Usvyat, Denis A1 - Saalfrank, Peter T1 - Theoretical Surface Science Beyond Gradient-Corrected Density Functional Theory BT - Water at alpha-Al2O3(0001) as a Case Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The quantum chemical description of the adsorption, vibrations, and reactions of molecules at periodic solid surfaces is frequently based on a methodological "standard model": density functional theory (DFT) in the generalized gradient approximation (GGA), using plane wave bases and three-dimensional supercells. Although the computationally efficient GGA functionals can be very successful, cases are known where they do not perform so well. Most importantly, activation energies for chemical reactions are typically underestimated, with the consequence of computed reaction rates being too large. In this work, we consider a well-studied model system: water or water fragments adsorbed on an Al-terminated alpha-Al2O3(0001) surface as a test bed for studying the performance of electronic structure methods, both from DFT and wave function theory. On the DFT side, we employ two GGA exchange correlation functionals: PW91 and PBE with and without dispersion corrections, whose results are then compared to those of hybrid functionals B3LYP and HSE06. Further, we follow a periodic wave function approach in the form of local second-order Moller-Plesset perturbation theory, LMP2, on a Hartree-Fock reference. En route, we address issues arising from the choice of the basis set. The key findings of our study are as follows: (i) DFT-GGA adsorption energies are in reasonable agreement with both hybrid-DFT and LMP2 values. In particular, the deviations between the relative energies, corresponding to different adsorption structures, are in the range of the error due to missing dispersion corrections or the basis set error. (ii) Harmonic DFT-GGA vibrational frequencies for oxygen hydrogen stretch modes are by several tens of wavenumbers red-shifted compared to corresponding hybrid-DFT values. The latter are in much better agreement with recent experimental data. (iii) The activation energy for a hydrogen diffusion reaction is grossly underestimated by GGA compared to hybrid-DFT or LMP2, which in turn are quite comparable. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b00407 SN - 1932-7447 VL - 123 IS - 11 SP - 6675 EP - 6684 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lehmann, Frederike A1 - Franz, Alexandra A1 - Toebbens, Daniel M. A1 - Levcenco, Sergej A1 - Unold, Thomas A1 - Taubert, Andreas A1 - Schorr, Susan T1 - The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction JF - RSC Advances N2 - By using synchrotron X-ray powder diffraction, the temperature dependent phase diagram of the hybrid perovskite tri-halide compounds, methyl ammonium lead iodide (MAPbI3, MA+ = CH3NH3+) and methyl ammonium lead bromide (MAPbBr3), as well as of their solid solutions, has been established. The existence of a large miscibility gap between 0.29 ≤ x ≤ 0.92 (±0.02) for the MAPb(I1−xBrx)3 solid solution has been proven. A systematic study of the lattice parameters for the solid solution series at room temperature revealed distinct deviations from Vegard's law. Furthermore, temperature dependent measurements showed that a strong temperature dependency of lattice parameters from the composition is present for iodine rich compositions. In contrast, the bromine rich compositions show an unusually low dependency of the phase transition temperature from the degree of substitution. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra09398a SN - 2046-2069 VL - 9 IS - 20 SP - 11151 EP - 11159 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Breternitz, Joachim A1 - Lehmann, Frederike A1 - Barnett, Sarah A. A1 - Nowell, Harriott A1 - Schorr, Susan T1 - Role of the Iodide-methylammonium interaction in the ferroelectricity of CH3NH3PbI3 JF - Angewandte Chemie - international edition N2 - Excellent conversion efficiencies of over 20% and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non-centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long-range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions. Y1 - 2019 VL - 59 IS - 1 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Herold, Heike M. A1 - Aigner, Tamara Bernadette A1 - Grill, Carolin E. A1 - Krüger, Stefanie A1 - Taubert, Andreas A1 - Scheibel, Thomas R. T1 - SpiderMAEn BT - recombinant spider silk-based hybrid materials for advanced energy technology JF - Bioinspired, Biomimetic and Nanobiomaterials N2 - A growing energy demand requires new and preferably renewable energy sources. The infinite availability of solar radiation makes its conversion into storable and transportable energy forms attractive for research as well as for the industry. One promising example of a transportable fuel is hydrogen (H-2), making research into eco-friendly hydrogen production meaningful. Here, a hybrid system was developed using newly designed recombinant spider silk protein variants as a template for mineralization with inorganic titanium dioxide and gold. These bioinspired organic/inorganic hybrid materials allow for hydrogen production upon light irradiation. To begin with, recombinant spider silk proteins bearing titanium dioxide and gold-binding moieties were created and processed into structured films. These films were modified with gold and titanium dioxide in order to produce a photocatalyst. Subsequent testing revealed hydrogen production as a result of light-induced hydrolysis of water. Therefore, the novel setup presented here provides access to a new principle of generating advanced hybrid materials for sustainable hydrogen production and depicts a promising platform for further studies on photocatalytic production of hydrogen, the most promising future fuel. KW - hybrid materials KW - hydrogen KW - photocatalysts Y1 - 2019 U6 - https://doi.org/10.1680/jbibn.18.00007 SN - 2045-9858 SN - 2045-9866 VL - 8 IS - 1 SP - 99 EP - 108 PB - ICE Publishing CY - Westminister ER - TY - JOUR A1 - Zehbe, Kerstin A1 - Lange, Alyna A1 - Taubert, Andreas T1 - Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity JF - Energy Fuels N2 - New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology. Y1 - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b03379 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 12 SP - 12885 EP - 12893 PB - American Chemical Society CY - Washington ER -