TY - JOUR A1 - Mohamed, S. A1 - Mackey, J. A1 - Langer, N. A1 - Podsiadlowski, Ph. T1 - Shaping the outflows of Wolf-Rayet stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Wolf-Rayet (WR) stars lose copious amounts of mass and momentum through dense stellar winds. The interaction of these outflows with their surroundings results in highly structured and complex circumstellar environments, often featuring knots, arcs, shells and spirals. Recent improvements in computational power and techniques have led to the development of detailed, multi-dimensional simulations that have given new insight into the origin of these structures, and better understanding of the physical mechanisms driving their formation. We review three of the main mechanisms that shape the outflows of WR stars: • interaction with the interstellar medium (ISM), i.e., wind-ISM interactions; • interaction with a stellar wind, either from a previous phase of evolution or the wind from a companion star, i.e., wind-wind interactions; • and interaction with a companion star that has a weak or insignificant outflow (e.g., a compact companion such as a neutron star or black hole), i.e.,wind-companion interactions. We also highlight the broader implications and impact of these circumstellar structures for related phenomena, e.g., for X-ray binaries and Gamma-ray bursts. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88200 SP - 283 EP - 288 ER - TY - JOUR A1 - Langer, N. A1 - Sanyal, D. A1 - Grassitelli, L. A1 - Szésci, D. T1 - The stellar Eddington limit JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - It is often assumed that when stars reach their Eddington limit, strong outflows are initiated, and that this happens only for extreme stellar masses. We discuss here that in models of up to 500 M⊙, the Eddington limit is never reached at the stellar surface. Instead, we argue that the Eddington limit is reached inside the stellar envelope in hydrogen-rich stars above ∼ 30 M⊙ and in Wolf-Rayet stars above ∼ 7 M⊙, with drastic effects for their struture and stability. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88121 SP - 241 EP - 244 ER - TY - JOUR A1 - Sanyal, D. A1 - Moriya, T. J. A1 - Langer, N. T1 - Envelope inflation in Wolf-Rayet stars and extended supernova shock breakout signals JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Massive, luminous stars reaching the Eddington limit in their interiors develop very dilute, extended envelopes. This effect is called envelope inflation. If the progenitors of Type Ib/c supernovae, which are believed to be Wolf-Rayet (WR) stars, have inflated envelopes then the shock breakout signals diffuse in them and can extend their rise times significantly. We show that our inflated, hydrogen-free, WR stellar models with a radius of ∼R⊙ can have shock breakout signals longer than ∼ 60 s. The puzzlingly long shock breakout signal observed in the Type Ib SN 2008D can be explained by an inflated progenitor envelope, and more such events might argue in favour of existence of inflated envelopes in general. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88062 SP - 213 EP - 216 ER - TY - JOUR A1 - Grassitelli, L. A1 - Langer, N. A1 - Sanyal, D. A1 - Fossati, Luca A1 - Bestenlehner, J. M. T1 - Instabilities in the envelope of Wolf-Rayet stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Wolf-Rayet stars are very hot stars close to the Eddington limit. In the conditions encountered in their radiation pressure dominated outer layers several instabilities are expected to arise. These instabilities could influence both the dynamic of their optically thick winds and the observed spectral lines introducing small and large scale variability. We investigate the conditions in the convective envelopes of our helium star models and relate them to the appearance of a high number of stochastic density inhomogeneities, i.e. clumping in the optically thick wind. We also investigate the pulsational stability of these envelope, considering the effect of the high stellar wind mass loss rates. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88024 SP - 201 EP - 204 ER - TY - JOUR A1 - Szécsi, D. A1 - Langer, N. A1 - Sanyal, D. A1 - Evans, C. J. A1 - Bestenlehner, J. M. A1 - Raucq, F. T1 - Do rapidly-rotating massive stars at low metallicity form Wolf–Rayet stars? JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The evolution of massive stars is strongly influenced by their initial chemical composition. We have computed rapidly-rotating massive star models with low metallicity (∼1/50 Z⊙) that evolve chemically homogeneously and have optically-thin winds during the main sequence evolution. These luminous and hot stars are predicted to emit intense mid- and far-UV radiation, but without the broad emission lines that characterize WR stars with optically-thick winds. We show that such Transparent Wind UV-Intense (TWUIN) stars may be responsible for the high number of He ii ionizing photons observed in metal-poor dwarf galaxies, such as IZw 18. We find that these TWUIN stars are possible long-duration gamma-ray burst progenitors. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87997 SP - 189 EP - 192 ER - TY - JOUR A1 - Tramper, F. A1 - Straal, S. M. A1 - Sanyal, D. A1 - Sana, Hugues A1 - de Koter, A. A1 - Gräfener, G. A1 - Langer, N. A1 - Vink, J. S. A1 - de Mink, S. E. A1 - Kaper, L. T1 - Massive Wolf-Rayet stars on the verge to explode BT - the properties of the WO stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The enigmatic oxygen-sequence Wolf-Rayet stars represent a rare stage in the evolution of massive stars. Their properties can provide unique constraints on the pre-supernova evolution of massive stars. This work presents the results of a quantitative spectroscopic analysis of the known single WO stars, with the aim to obtain the key stellar parameters and deduce their evolutionary state.X-Shooter spectra of the WO stars are modeled using the line-blanketed non-local thermal equilibrium atmosphere code cmfgen. The obtained stellar parameters show that the WO stars are very hot, with temperatures ranging from 150 kK to 210 kK. Their chemical composition is dominated by carbon (>50%), while the helium mass fraction is very low (down to 14%). Oxygen mass fractions reach as high as 25%. These properties can be reproduced with dedicated evolutionary models for helium stars, which show that the stars are post core-helium burning and very close to their eventual supernova explosion. The helium-star masses indicate initial masses or approximately 40 - 60M⊙.Thus, WO stars represent the final evolutionary stage of stars with estimated initial masses of 40 - 60M⊙. They are post core-helium burning and may explode as type Ic supernovae within a few thousand years. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87786 SP - 109 EP - 112 ER -