TY - JOUR A1 - Wietzke, Luzie M. A1 - Merz, Bruno A1 - Gerlitz, Lars A1 - Kreibich, Heidi A1 - Guse, Björn A1 - Castellarin, Attilio A1 - Vorogushyn, Sergiy T1 - Comparative analysis of scalar upper tail indicators JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Different upper tail indicators exist to characterize heavy tail phenomena, but no comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness - the surprise factor. Sensitivity analyses to sample size and changes in scale-to-location ratio are carried out in bootstrap experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable between records of similar length. For samples with symmetric Lorenz curves, shape parameter, obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. These indicators should be supported with calculation of the Lorenz asymmetry coefficients and interpreted with caution. KW - upper tail behaviour KW - heavy-tailed distributions KW - extremes KW - diagnostics KW - surprise Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1769104 SN - 0262-6667 SN - 2150-3435 VL - 65 IS - 10 SP - 1625 EP - 1639 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Ganguli, Poulomi A1 - Paprotny, Dominik A1 - Hasan, Mehedi A1 - Güntner, Andreas A1 - Merz, Bruno T1 - Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe JF - Earth's future N2 - Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods. KW - compound flood KW - storm surge KW - river floods KW - sea level rise KW - climate KW - change KW - Europe Y1 - 2020 U6 - https://doi.org/10.1029/2020EF001752 SN - 2328-4277 VL - 8 IS - 11 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - JOUR A1 - Metin, Ayse Duha A1 - Dung, Nguyen Viet A1 - Schröter, Kai A1 - Vorogushyn, Sergiy A1 - Guse, Björn A1 - Kreibich, Heidi A1 - Merz, Bruno T1 - The role of spatial dependence for large-scale flood risk estimation JF - Natural hazards and earth system sciences N2 - Flood risk assessments are typically based on scenarios which assume homogeneous return periods of flood peaks throughout the catchment. This assumption is unrealistic for real flood events and may bias risk estimates for specific return periods. We investigate how three assumptions about the spatial dependence affect risk estimates: (i) spatially homogeneous scenarios (complete dependence), (ii) spatially heterogeneous scenarios (modelled dependence) and (iii) spatially heterogeneous but uncorrelated scenarios (complete independence). To this end, the model chain RFM (regional flood model) is applied to the Elbe catchment in Germany, accounting for the spatio-temporal dynamics of all flood generation processes, from the rainfall through catchment and river system processes to damage mechanisms. Different assumptions about the spatial dependence do not influence the expected annual damage (EAD); however, they bias the risk curve, i.e. the cumulative distribution function of damage. The widespread assumption of complete dependence strongly overestimates flood damage of the order of 100% for return periods larger than approximately 200 years. On the other hand, for small and medium floods with return periods smaller than approximately 50 years, damage is underestimated. The overestimation aggravates when risk is estimated for larger areas. This study demonstrates the importance of representing the spatial dependence of flood peaks and damage for risk assessments. Y1 - 2020 U6 - https://doi.org/10.5194/nhess-20-967-2020 SN - 1561-8633 SN - 1684-9981 VL - 20 IS - 4 SP - 967 EP - 979 PB - European Geosciences Union (EGU) ; Copernicus CY - Göttingen ER - TY - JOUR A1 - Paprotny, Dominik A1 - Kreibich, Heidi A1 - Morales-Napoles, Oswaldo A1 - Wagenaar, Dennis A1 - Castellarin, Attilio A1 - Carisi, Francesca A1 - Bertin, Xavier A1 - Merz, Bruno A1 - Schröter, Kai T1 - A probabilistic approach to estimating residential losses from different flood types JF - Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards N2 - Residential assets, comprising buildings and household contents, are a major source of direct flood losses. Existing damage models are mostly deterministic and limited to particular countries or flood types. Here, we compile building-level losses from Germany, Italy and the Netherlands covering a wide range of fluvial and pluvial flood events. Utilizing a Bayesian network (BN) for continuous variables, we find that relative losses (i.e. loss relative to exposure) to building structure and its contents could be estimated with five variables: water depth, flow velocity, event return period, building usable floor space area and regional disposable income per capita. The model's ability to predict flood losses is validated for the 11 flood events contained in the sample. Predictions for the German and Italian fluvial floods were better than for pluvial floods or the 1993 Meuse river flood. Further, a case study of a 2010 coastal flood in France is used to test the BN model's performance for a type of flood not included in the survey dataset. Overall, the BN model achieved better results than any of 10 alternative damage models for reproducing average losses for the 2010 flood. An additional case study of a 2013 fluvial flood has also shown good performance of the model. The study shows that data from many flood events can be combined to derive most important factors driving flood losses across regions and time, and that resulting damage models could be applied in an open data framework. KW - fluvial floods KW - coastal floods KW - pluvial floods KW - Bayesian networks KW - flood KW - damage surveys Y1 - 2020 U6 - https://doi.org/10.1007/s11069-020-04413-x SN - 0921-030X SN - 1573-0840 VL - 105 IS - 3 SP - 2569 EP - 2601 PB - Springer CY - New York ER - TY - JOUR A1 - Merz, Bruno A1 - Kuhlicke, Christian A1 - Kunz, Michael A1 - Pittore, Massimiliano A1 - Babeyko, Andrey A1 - Bresch, David N. A1 - Domeisen, Daniela I. A1 - Feser, Frauke A1 - Koszalka, Inga A1 - Kreibich, Heidi A1 - Pantillon, Florian A1 - Parolai, Stefano A1 - Pinto, Joaquim G. A1 - Punge, Heinz Jürgen A1 - Rivalta, Eleonora A1 - Schröter, Kai A1 - Strehlow, Karen A1 - Weisse, Ralf A1 - Wurpts, Andreas T1 - Impact forecasting to support emergency management of natural hazards JF - Reviews of geophysics N2 - Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. KW - impact forecasting KW - natural hazards KW - early warning Y1 - 2020 U6 - https://doi.org/10.1029/2020RG000704 SN - 8755-1209 SN - 1944-9208 VL - 58 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis JF - Hydrology and Earth System Sciences N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-2235-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 5 SP - 2235 EP - 2251 PB - Copernicus Publ. CY - Göttingen ER -