TY - JOUR A1 - Racano, Simone A1 - Jara-Munoz, Julius A1 - Cosentino, Domenico A1 - Melnick, Daniel T1 - Variable quaternary uplift along the Southern Margin of the Central Anatolian Plateau inferred from modeling Marine Terrace sequences JF - Tectonics N2 - The southern margin of the Central Anatolian Plateau (CAP) records a strong uplift phase after the early Middle Pleistocene, which has been related to the slab break-off of the subducting Arabian plate beneath the Anatolian microplate. During the last 450 kyr the area underwent an uplift phase at a mean rate of similar to 3.2 m/kyr, as suggested by Middle Pleistocene marine sediments exposed at similar to 1,500 m above sea level. These values are significantly higher than the 1.0-1.5 m/kyr estimated since the Late Pleistocene, suggesting temporal variations in uplift rate. To estimate changes in uplift rate during the Pleistocene we studied the marine terraces along the CAP southern margin, mapping the remnants of the platforms and their associated deposits in the field, and used the TerraceM software to identify the position and elevation of associated shoreline angles. We used shoreline angles and the timing of Quaternary marine sedimentation as constrains for a Landscape Evolution Model that simulates wave erosion of an uplifting coast. We applied random optimization algorithms and minimization statistics to find the input parameters that better reproduce the morphology of CAP marine terraces. The best-fitting uplift rate history suggests a significative increase from 1.9 to 3.5 m/kyr between 500 and 200 kyr, followed by an abrupt decrease to 1.4 m/kyr until the present. Our results agree with slab break-off models, which suggest a strong uplift pulse during slab rupture followed by a smoother decrease. Y1 - 2020 U6 - https://doi.org/10.1029/2019TC005921 SN - 0278-7407 SN - 1944-9194 VL - 39 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jara-Munoz, Julius A1 - Melnick, Daniel T1 - Unraveling sea-level variations and tectonic uplift in wave-built marine terraces, Santa Maria Island, Chile JF - Quaternary research : an interdisciplinary journal N2 - The architecture of coastal sequences in tectonically-active regions results mostly from a combination of sea-level and land-level changes. The objective of this study is to unravel these signals by combining sequence stratigraphy and sedimentology of near-shore sedimentary sequences in wave-built terraces. We focus on Santa Maria Island at the south-central Chile margin, which hosts excellent exposures of coastal sediments from Marine Isotope Stage 3. A novel method based on statistical analysis of grain-size distributions coupled with fades descriptions provided a detailed account of transgressive-regressive cycles. Radiocarbon ages from paleosols constrain the chronology between >53 and similar to 31 cal ka BP. Because the influence of glaciations can be neglected, we calculated relative sea-level curves by tying the onset of deposition on a bedrock abrasion platform to a global sea-level curve. The observed depositional cycles match those predicted for uplift rates between 1.2 and 1.8 m/ka. The studied sedimentary units represent depositional cycles that resulted in reoccupation events of an existing marine terrace. Our study demonstrates wave-built marine terrace deposits along clastic shorelines in temperate regions can be used to distinguish between tectonic uplift and climate-induced sea-level changes. KW - Marine terraces KW - Wave-built terraces KW - Terrace reoccupation KW - Tectonic uplift KW - Sea-level change KW - Coastal sedimentation Y1 - 2015 U6 - https://doi.org/10.1016/j.yqres.2014.10.002 SN - 0033-5894 SN - 1096-0287 VL - 83 IS - 1 SP - 216 EP - 228 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Jara-Munoz, Julius A1 - Melnick, Daniel A1 - Strecker, Manfred T1 - TerraceM: A MATLAB (R) tool to analyze marine and lacustrine terraces using high-resolution topography JF - Geosphere N2 - High-resolution topographic data greatly facilitate the remote identification of geomorphic features, furnishing valuable information concerning surface processes and characterization of reference markers for quantifying tectonic deformation. Marine terraces have been used as long baseline geodetic markers of relative past sea-level positions, reflecting the interplay between vertical crustal movements and sea-level oscillations. Uplift rates may be determined from the terrace age and the elevation of its shoreline angle, a geomorphic feature that can be correlated with past sea-levels positions. A precise definition of the shoreline angle in time and space is essential to obtain reliable uplift rates with coherent spatial correlation. To improve our ability to rapidly assess and map shoreline angles at regional and local scales, we have developed TerraceM, a MATLAB (R) graphical user interface that allows the shoreline angle and its associated error to be estimated using high-resolution topography. TerraceM uses topographic swath profiles oriented orthogonally to the terrace riser. Four functions are included to analyze the swath profiles and extract the shoreline angle, from both staircase sequences of multiple terraces and rough coasts characterized by eroded remnants of emerged terrace surfaces. The former are measured by outlining the paleocliffs and paieo-platforms and finding their intersection by extrapolating linear regressions, whereas the latter are assessed by automatically detecting peaks of sea-stack tops and back-projecting them to the modern sea cliff. In the absence of rigorous absolute age determinations of marine terraces, their geomorphic age may be estimated using previously published diffusion models. Postprocessing functions are included to obtain first-order statistics of shoreline-angle elevations and their spatial distribution. TerraceM has the ability to process series of profiles from several sites in an efficient and structured workflow. Results may be exported in Google Earth and ESRI shapefile formats. The precision and accuracy of the method have been estimated from a case study at Santa Cruz, California, by comparing TerraceM results with published field measurements. The repeatability was evaluated using multiple measurements made by inexperienced users. TerraceM will improve the efficiency and precision of estimating shoreline-angle elevations in wave-cut terraces in both marine and lacustrine environments. Y1 - 2016 U6 - https://doi.org/10.1130/GES01208.1 SN - 1553-040X VL - 12 SP - 176 EP - 195 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Jara-Munoz, Julius A1 - Melnick, Daniel A1 - Pedoja, Kevin A1 - Strecker, Manfred T1 - TerraceM-2: A MatlabR (R) Interface for Mapping and Modeling Marine and Lacustrine Terraces JF - Frontiers in Earth Science N2 - The morphology of marine and lacustrine terraces has been largely used to measure past sea- and lake-level positions and estimate vertical deformation in a wealth of studies focused on climate and tectonic processes. To obtain accurate morphometric assessments of terrace morphology we present TerraceM-2, an improved version of our MatlabR (R) graphic-user interface that provides new methodologies for morphometric analyses as well as landscape evolution and fault-dislocation modeling. The new version includes novel routines to map the elevation and spatial distribution of terraces, to model their formation and evolution, and to estimate fault-slip rates from terrace deformation patterns. TerraceM-2 has significantly improves its processing speed and mapping capabilities, and includes separate functions for developing customized workflows beyond the graphic-user interface. We illustrate these new mapping and modeling capabilities with three examples: mapping lacustrine shorelines in the Dead Sea to estimate deformation across the Dead Sea Fault, landscape evolution modeling to estimate a history of uplift rates in southern Peru, and dislocation modeling of deformed marine terraces in California. These examples also illustrate the need to use topographic data of different resolutions. The new modeling and mapping routines of TerraceM-2 highlight the advantages of an integrated joint mapping and modeling approach to improve the efficiency and precision of coastal terrace metrics in both marine and lacustrine environments. KW - TerraceM KW - marine terraces KW - tectonic geomorphology KW - geomorphic markers KW - LiDAR KW - coastal geomorphology KW - neotectonics KW - morphometry Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00255 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Jara-Munoz, Julius A1 - Melnick, Daniel A1 - Brill, Dominik A1 - Strecker, Manfred T1 - Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The segmentation of major fault systems in subduction zones controls earthquake magnitude and location, but the causes for the existence of segment boundaries and the relationships between long-term deformation and the extent of earthquake rupture, are poorly understood. We compare permanent and seismic-cycle deformation patterns along the rupture zone of the 2010 Maule earthquake (M8.8), which ruptured 500 km of the Chile subduction margin. We analyzed the morphology of MIS-5 marine terraces using LiDAR topography and established their chronology and coeval origin with twelve luminescence ages, stratigraphy and geomorphic correlation, obtaining a virtually continuous distribution of uplift rates along the entire rupture zone. The mean uplift rate for these terraces is 0.5 m/ka. This value is exceeded in three areas, which have experienced rapid emergence of up to 1.6 m/ka; they are located at the northern, central, and southern sectors of the rupture zone, referred to as Topocalma, Carranza and Arauco, respectively. The three sectors correlate with boundaries of eight great earthquakes dating back to 1730. The Topocalma and Arauco sectors, located at the boundaries of the 2010 rupture, consist of broad zones of crustal warping with wavelengths of 60 and 90 km, respectively. These two regions coincide with the axes of oroclinal bending of the entire Andean margin and correlate with changes in curvature of the plate interface. Rapid uplift at Carranza, in turn, is of shorter wavelength and associated with footwall flexure of three crustal-scale normal faults. The uplift rate at Carranza is inversely correlated with plate coupling as well as with coseismic slip, suggesting permanent deformation may accumulate interseismically. We propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust resulting in barriers to the propagation of great earthquakes. Slip during the 1960 (M9.5) and 2010 events overlapped with the similar to 90-km-long zone of rapid uplift at Arauco; similarly, slip in 2010 and 1906 extended across the similar to 60-km-long section of the megathrust at Topocalma, but this area was completely breached by the 1730 (M similar to 9) event, which propagated southward until Carranza. Both Arauco and Topocalma show evidence of sustained rapid uplift since at least the middle Pleistocene. These two sectors might thus constitute discrete seismotectonic boundaries restraining most, but not all great earthquake ruptures. Based on our observations, such barriers might be breached during multi-segment super-cycle events. (C) 2015 Elsevier Ltd. All rights reserved. KW - LiDAR KW - Subduction earthquakes KW - Marine terraces KW - Seismotectonic segmentation KW - Permanent uplift KW - Maule earthquake KW - Coastal uplift KW - TerraceM Y1 - 2015 U6 - https://doi.org/10.1016/j.quascirev.2015.01.005 SN - 0277-3791 VL - 113 SP - 171 EP - 192 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jara-Munoz, Julius A1 - Melnick, Daniel A1 - Zambrano, Patricio A1 - Rietbrock, Andreas A1 - Gonzalez, Javiera A1 - Argandona, Boris A1 - Strecker, Manfred T1 - Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile JF - Journal of geophysical research : Solid earth N2 - Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3m/ka near the edge of the continental shelf, 1.5m/ka at the emerged Santa Maria Island, -0.1m/ka at the center of the Arauco Bay, and 0.3m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa Maria splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3km depth down to the plate interface at 16km that slips at a rate between 3.0 and 3.7m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of similar to 150-200years, the fault would slip similar to 0.5m per event, equivalent to a magnitude similar to 6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every similar to 1000years, the fault would slip similar to 3.7m per event, equivalent to a magnitude similar to 7.5 earthquake. KW - splay fault KW - marine terraces KW - Arauco Bay KW - TerraceM KW - fore arc KW - earthquake Y1 - 2017 U6 - https://doi.org/10.1002/2016JB013339 SN - 2169-9313 SN - 2169-9356 VL - 122 SP - 4529 EP - 4558 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Pedoja, K. A1 - Jara-Munoz, Julius A1 - De Gelder, G. A1 - Robertson, J. A1 - Meschis, M. A1 - Fernandez-Blanco, D. A1 - Nexer, M. A1 - Poprawski, Y. A1 - Dugue, O. A1 - Delcaillau, B. A1 - Bessin, P. A1 - Benabdelouahed, M. A1 - Authemayou, C. A1 - Husson, L. A1 - Regard, V. A1 - Menier, D. A1 - Pinel, B. T1 - Neogene-Quaternary slow coastal uplift of Western Europe through the perspective of sequences of strandlines from the Cotentin Peninsula (Normandy, France) JF - Geomorphology : an international journal on pure and applied geomorphology N2 - The Cotentin Peninsula (Normandy, France) displays sequences of marine terraces and rasas, the latter being wide Late Cenozoic coastal erosion surfaces, that are typical of Western European coasts in Portugal, Spain, France and southern England. Remote sensing imagery and field mapping enabled reappraisal of the Cotentin coastal sequences. From bottom to top, the N Cotentin sequence includes four previously recognized Pleistocene marine terraces (T1 to T4) at elevations <40 m as well as four higher and older rasas (R1 to R4) reaching 200 +/- 5 m in elevation. Low-standing marine terraces are not observed in the central part of the Peninsula and a limited number of terraces are described to the south. The high-standing rasas are widespread all over the peninsula. Such strandline distributions reveal major changes during the Late Cenozoic. Progressive uplift of an irregular sea-floor led to subaerial exposure of bathymetric highs that were carved into rocky platforms, rasas and marine terraces. Eventually, five main islands coalesced and connected to the mainland to the south to form the Cotentin Peninsula. On the basis of previous dating of the last interglacial maximum terrace (i.e. Marine Isotopic Stage, MIS 5e), sequential morphostratigraphy and modelling, we have reappraised uplift rates and derived: (i) mean Upper Pleistocene (i.e. since MIS 5e similar to 122 +/- 6 ka, i.e. kilo annum) apparent uplift rates of 0.04 +/- 0.01 mm/yr, (ii) mean Middle Pleistocene eustasy-corrected uplift rates of 0.09 +/- 0.03 mm/yr, and (iii) low mean Pleistocene uplift rates of 0.01 mm/yr. Extrapolations of these slow rates combined with geological evidence implies that the formation of the sequences from the Cotentin Peninsula occurred between 3 Ma (Pliocene) and 15 Ma (Miocene), which cannot be narrowed down further without additional research. Along the coasts of Western Europe, sequences of marine terraces and rasas are widespread (169 preserve the MIS Se benchmark). In Spain, Portugal, S England and other parts of western France, the sequences morphostratigraphy is very similar to that of Cotentin. The onset of such Western European sequences occurred during the Miocene (e.g. Spain) or Pliocene (e.g. Portugal). We interpret this Neogene-Quaternary coastal uplift as a symptom of the increasing lithospheric compression that accompanies Cenozoic orogenies. (C) 2017 Elsevier B.V. All rights reserved. KW - Marine terrace KW - Rasa KW - Cotentin and Western Europe KW - Neogene and Quaternary coastal uplift Y1 - 2017 U6 - https://doi.org/10.1016/j.geomorph.2017.11.021 SN - 0169-555X SN - 1872-695X VL - 303 SP - 338 EP - 356 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Freisleben, Roland A1 - Jara-Munoz, Julius A1 - Melnick, Daniel A1 - Miguel Martinez, Jose A1 - Strecker, Manfred T1 - Marine terraces of the last interglacial period along the Pacific coast of South America (1 degrees N-40 degrees S) JF - Earth system science data : ESSD N2 - Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacialcycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along similar to 5000 km of the western coast of South America between 1 degrees N and 40 degrees S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr(-1) averaged over the past similar to 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (similar to 100-200 m) and long-wavelength (similar to 10(2) km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaiso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020). Y1 - 2021 U6 - https://doi.org/10.5194/essd-13-2487-2021 SN - 1866-3508 SN - 1866-3516 VL - 13 IS - 6 SP - 2487 EP - 2513 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - de Gelder, Gino A1 - Fernandez-Blanco, David A1 - Melnick, Daniel A1 - Duclaux, Guillaume A1 - Bell, Rebecca E. A1 - Jara-Munoz, Julius A1 - Armijo, Rolando A1 - Lacassin, Robin T1 - Lithospheric flexure and rheology determined by climate cycle markers in the Corinth Rift JF - Scientific reports N2 - Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene similar to 100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5-9.0 mm.yr(-1) on the master fault over the past similar to 610 ka and an uplift/ subsidence ratio of 1:1.1-2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40-60 degrees planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36377-1 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bernhardt, Anne A1 - Melnick, Daniel A1 - Jara-Munoz, Julius A1 - Argandona, Boris A1 - Gonzalez, Javiera A1 - Strecker, Manfred T1 - Controls on submarine canyon activity during sea-level highstands: The Biobio canyon system offshore Chile JF - Geosphere N2 - Newly acquired high-resolution bathymetric data (with 5 m and 2 m grid sizes) from the continental shelf off Concepcion (Chile), in combination with seismic reflection profiles, reveal a distinctly different evolution for the Biobio submarine canyon compared to that of one of its tributaries. Both canyons are incised into the shelf of the active margin. Whereas the inner shelf appears to be mantled with unconsolidated sediment, the outer shelf shows the influence of strong bottom currents that form drifts of loose sediment and transport -material into the Biobio submarine canyon and onto the continental slope. The main stem of the Biobio Canyon is connected to the mouth of the Biobio River and currently provides a conduit for terrestrial sediment from the continental shelf to the deep seafloor. In contrast, the head of its tributary closest to the coast is located similar to 24 km offshore of the present-day coastline at 120 m water depth, and it is subject to passive sedimentation. However, canyon activity within the study area is interpreted to be controlled not only by the direct input of fluvial sediments into the canyon head facilitated by the river-mouth to canyon-head connection, but also by input from southward-directed bottom currents and possibly longshore drift. In addition, about 24 km offshore of the present-day coastline, the main stem of the Biobio Canyon has steep canyon walls next to sites of active tectonic deformation that are prone to wall failure. Mass-failure events may also foster turbidity currents and contribute to canyon feeding. In contrast, the tributary has less steep canyon walls with limited evidence of canyon-wall failure and is located down-system of bottom currents from the Biobio Canyon. It consequently receives neither fluvial nor longshore sediments. Therefore, the canyon's connectivity to fluvial or longshore sediment delivery pathways is affected by the distance of the canyon head from the coastline and the orientation of the canyon axis relative to the direction of bottom currents. The ability of a submarine canyon to act as an active conduit for large quantities of terrestrial sediment toward the deep sea during sea-level highstands may be controlled by several different conditions simultaneously. These include bottom current direction, structural deformation of the seafloor affecting canyon location and orientation as well as canyon-wall failure, shelf gradient and associated distance from the canyon head to the coast, and fluvial networks. The complex interplay between these factors may vary even within an individual canyon system, resulting in distinct levels of canyon activity on a regional scale. Y1 - 2015 U6 - https://doi.org/10.1130/GES01063.1 SN - 1553-040X VL - 11 IS - 4 SP - 1226 EP - 1255 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Moreno, Marcos A1 - Cisternas, Marco A1 - Jara-Munoz, Julius A1 - Wesson, Robert A1 - Nelson, Alan A1 - Baez, Juan Carlos A1 - Deng, Zhiguo T1 - Back to full interseismic plate locking decades after the giant 1960 Chile earthquake JF - Nature Communications N2 - Great megathrust earthquakes arise from the sudden release of energy accumulated during centuries of interseismic plate convergence. The moment deficit (energy available for future earthquakes) is commonly inferred by integrating the rate of interseismic plate locking over the time since the previous great earthquake. But accurate integration requires knowledge of how interseismic plate locking changes decades after earthquakes, measurements not available for most great earthquakes. Here we reconstruct the post-earthquake history of plate locking at Guafo Island, above the seismogenic zone of the giant 1960 (M-w = 9.5) Chile earthquake, through forward modeling of land-level changes inferred from aerial imagery (since 1974) and measured by GPS (since 1994). We find that interseismic locking increased to similar to 70% in the decade following the 1960 earthquake and then gradually to 100% by 2005. Our findings illustrate the transient evolution of plate locking in Chile, and suggest a similarly complex evolution elsewhere, with implications for the time- and magnitude-dependent probability of future events. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05989-6 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER -