TY - JOUR A1 - Gryzik, Stefanie A1 - Hoang, Yen A1 - Lischke, Timo A1 - Mohr, Elodie A1 - Venzke, Melanie A1 - Kadner, Isabelle A1 - Pötzsch, Josephine A1 - Groth, Detlef A1 - Radbruch, Andreas A1 - Hutloff, Andreas A1 - Baumgrass, Ria T1 - Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception JF - eLife N2 - Dysregulated cytokine expression by T cells plays a pivotal role in the pathogenesis of autoimmune diseases. However, the identification of the corresponding pathogenic subpopulations is a challenge, since a distinction between physiological variation and a new quality in the expression of protein markers requires combinatorial evaluation. Here, we were able to identify a super-functional follicular helper T cell (Tfh)-like subpopulation in lupus-prone NZBxW mice with our binning approach "pattern recognition of immune cells (PRI)". PRI uncovered a subpopulation of IL-21(+) IFN-gamma(high) PD-1(low) CD40L(high) CXCR5(-) Bcl-6(-) T cells specifically expanded in diseased mice. In addition, these cells express high levels of TNF-alpha and IL-2, and provide B cell help for IgG production in an IL-21 and CD40L dependent manner. This super-functional T cell subset might be a superior driver of autoimmune processes due to a polyfunctional and high cytokine expression combined with Tfh-like properties. Y1 - 2020 U6 - https://doi.org/10.7554/eLife.53226 SN - 2050-084X VL - 9 PB - eLife Sciences Publications CY - Cambridge ER -